File size: 1,656 Bytes
b48303b
41073f5
 
 
 
b48303b
41073f5
 
b48303b
41073f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
---

language: 
- tr
tags:
- roberta
license: cc-by-nc-sa-4.0
datasets:
- oscar
---


# RoBERTa Turkish medium Character-level 16k (uncased)

Pretrained model on Turkish language using a masked language modeling (MLM) objective. The model is uncased. 
The pretrained corpus is OSCAR's Turkish split, but it is further filtered and cleaned. 

Model architecture is similar to bert-medium (8 layers, 8 heads, and 512 hidden size). Tokenization algorithm is Character-level, which means that text is split by individual characters. Vocabulary size is 16.7k. 

## Note that this model does not include a tokenizer file, because it uses ByT5Tokenizer. The following code can be used for tokenization, example max length(1024) can be changed:
```

	tokenizer = ByT5Tokenizer.from_pretrained("google/byt5-small")

	tokenizer.mask_token = tokenizer.special_tokens_map_extended['additional_special_tokens'][0]

	tokenizer.cls_token = tokenizer.special_tokens_map_extended['additional_special_tokens'][1]

	tokenizer.bos_token = tokenizer.special_tokens_map_extended['additional_special_tokens'][1]

	tokenizer.sep_token = tokenizer.special_tokens_map_extended['additional_special_tokens'][2]

	tokenizer.eos_token = tokenizer.special_tokens_map_extended['additional_special_tokens'][2]

	tokenizer.pad_token = tokenizer.special_tokens_map_extended['additional_special_tokens'][3]

	tokenizer.unk_token = tokenizer.special_tokens_map_extended['additional_special_tokens'][3]

	tokenizer.model_max_length = 1024

```

The details can be found at this paper: 
https://arxiv.org/...

### BibTeX entry and citation info
```bibtex

@article{}

```