model uploaded.
Browse files- README.md +34 -0
- config.json +27 -0
- pytorch_model.bin +3 -0
README.md
CHANGED
@@ -1,3 +1,37 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
2 |
license: cc-by-nc-sa-4.0
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- tr
|
4 |
+
tags:
|
5 |
+
- roberta
|
6 |
license: cc-by-nc-sa-4.0
|
7 |
+
datasets:
|
8 |
+
- oscar
|
9 |
---
|
10 |
+
|
11 |
+
# RoBERTa Turkish medium Character-level 16k (uncased)
|
12 |
+
|
13 |
+
Pretrained model on Turkish language using a masked language modeling (MLM) objective. The model is uncased.
|
14 |
+
The pretrained corpus is OSCAR's Turkish split, but it is further filtered and cleaned.
|
15 |
+
|
16 |
+
Model architecture is similar to bert-medium (8 layers, 8 heads, and 512 hidden size). Tokenization algorithm is Character-level, which means that text is split by individual characters. Vocabulary size is 16.7k.
|
17 |
+
|
18 |
+
## Note that this model does not include a tokenizer file, because it uses ByT5Tokenizer. The following code can be used for tokenization, example max length(1024) can be changed:
|
19 |
+
```
|
20 |
+
tokenizer = ByT5Tokenizer.from_pretrained("google/byt5-small")
|
21 |
+
tokenizer.mask_token = tokenizer.special_tokens_map_extended['additional_special_tokens'][0]
|
22 |
+
tokenizer.cls_token = tokenizer.special_tokens_map_extended['additional_special_tokens'][1]
|
23 |
+
tokenizer.bos_token = tokenizer.special_tokens_map_extended['additional_special_tokens'][1]
|
24 |
+
tokenizer.sep_token = tokenizer.special_tokens_map_extended['additional_special_tokens'][2]
|
25 |
+
tokenizer.eos_token = tokenizer.special_tokens_map_extended['additional_special_tokens'][2]
|
26 |
+
tokenizer.pad_token = tokenizer.special_tokens_map_extended['additional_special_tokens'][3]
|
27 |
+
tokenizer.unk_token = tokenizer.special_tokens_map_extended['additional_special_tokens'][3]
|
28 |
+
tokenizer.model_max_length = 1024
|
29 |
+
```
|
30 |
+
|
31 |
+
The details can be found at this paper:
|
32 |
+
https://arxiv.org/...
|
33 |
+
|
34 |
+
### BibTeX entry and citation info
|
35 |
+
```bibtex
|
36 |
+
@article{}
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"RobertaForMaskedLM"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"gradient_checkpointing": false,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 512,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 1026,
|
17 |
+
"model_type": "roberta",
|
18 |
+
"num_attention_heads": 8,
|
19 |
+
"num_hidden_layers": 8,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"position_embedding_type": "absolute",
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.10.0",
|
24 |
+
"type_vocab_size": 1,
|
25 |
+
"use_cache": true,
|
26 |
+
"vocab_size": 384
|
27 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:daf78c35c0932fe91c6f7e21a34c67deab25940f21446697fa0a2dce0e177931
|
3 |
+
size 138471634
|