Spaetzle
Collection
German-English models, mostly merged, some sft/dpo
•
117 items
•
Updated
Spaetzle-v31-7b is a merge of the following models using LazyMergekit:
Model | AGIEval | GPT4All | TruthfulQA | Bigbench | Average |
---|---|---|---|---|---|
Spaetzle-v31-7b | 46.23 | 76.6 | 69.58 | 46.79 | 59.8 |
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
agieval_aqua_rat | 0 | acc | 28.74 | ± | 2.85 |
acc_norm | 27.56 | ± | 2.81 | ||
agieval_logiqa_en | 0 | acc | 39.63 | ± | 1.92 |
acc_norm | 40.25 | ± | 1.92 | ||
agieval_lsat_ar | 0 | acc | 24.35 | ± | 2.84 |
acc_norm | 24.35 | ± | 2.84 | ||
agieval_lsat_lr | 0 | acc | 54.31 | ± | 2.21 |
acc_norm | 54.12 | ± | 2.21 | ||
agieval_lsat_rc | 0 | acc | 65.80 | ± | 2.90 |
acc_norm | 66.54 | ± | 2.88 | ||
agieval_sat_en | 0 | acc | 79.13 | ± | 2.84 |
acc_norm | 79.61 | ± | 2.81 | ||
agieval_sat_en_without_passage | 0 | acc | 46.12 | ± | 3.48 |
acc_norm | 45.15 | ± | 3.48 | ||
agieval_sat_math | 0 | acc | 35.00 | ± | 3.22 |
acc_norm | 32.27 | ± | 3.16 |
Average: 46.23%
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
arc_challenge | 0 | acc | 64.76 | ± | 1.40 |
acc_norm | 66.89 | ± | 1.38 | ||
arc_easy | 0 | acc | 86.66 | ± | 0.70 |
acc_norm | 82.83 | ± | 0.77 | ||
boolq | 1 | acc | 87.80 | ± | 0.57 |
hellaswag | 0 | acc | 67.43 | ± | 0.47 |
acc_norm | 85.85 | ± | 0.35 | ||
openbookqa | 0 | acc | 38.00 | ± | 2.17 |
acc_norm | 48.80 | ± | 2.24 | ||
piqa | 0 | acc | 83.57 | ± | 0.86 |
acc_norm | 84.71 | ± | 0.84 | ||
winogrande | 0 | acc | 79.32 | ± | 1.14 |
Average: 76.6%
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
truthfulqa_mc | 1 | mc1 | 53.37 | ± | 1.75 |
mc2 | 69.58 | ± | 1.48 |
Average: 69.58%
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
bigbench_causal_judgement | 0 | multiple_choice_grade | 56.84 | ± | 3.60 |
bigbench_date_understanding | 0 | multiple_choice_grade | 66.94 | ± | 2.45 |
bigbench_disambiguation_qa | 0 | multiple_choice_grade | 44.57 | ± | 3.10 |
bigbench_geometric_shapes | 0 | multiple_choice_grade | 21.17 | ± | 2.16 |
exact_str_match | 0.28 | ± | 0.28 | ||
bigbench_logical_deduction_five_objects | 0 | multiple_choice_grade | 31.80 | ± | 2.08 |
bigbench_logical_deduction_seven_objects | 0 | multiple_choice_grade | 22.57 | ± | 1.58 |
bigbench_logical_deduction_three_objects | 0 | multiple_choice_grade | 56.00 | ± | 2.87 |
bigbench_movie_recommendation | 0 | multiple_choice_grade | 45.40 | ± | 2.23 |
bigbench_navigate | 0 | multiple_choice_grade | 52.80 | ± | 1.58 |
bigbench_reasoning_about_colored_objects | 0 | multiple_choice_grade | 70.65 | ± | 1.02 |
bigbench_ruin_names | 0 | multiple_choice_grade | 50.67 | ± | 2.36 |
bigbench_salient_translation_error_detection | 0 | multiple_choice_grade | 30.66 | ± | 1.46 |
bigbench_snarks | 0 | multiple_choice_grade | 71.27 | ± | 3.37 |
bigbench_sports_understanding | 0 | multiple_choice_grade | 74.34 | ± | 1.39 |
bigbench_temporal_sequences | 0 | multiple_choice_grade | 49.80 | ± | 1.58 |
bigbench_tracking_shuffled_objects_five_objects | 0 | multiple_choice_grade | 22.16 | ± | 1.18 |
bigbench_tracking_shuffled_objects_seven_objects | 0 | multiple_choice_grade | 18.57 | ± | 0.93 |
bigbench_tracking_shuffled_objects_three_objects | 0 | multiple_choice_grade | 56.00 | ± | 2.87 |
Average: 46.79%
Average score: 59.8%
Elapsed time: 02:09:50
models:
- model: cstr/spaetzle-v8-7b
# no parameters necessary for base model
- model: yleo/EmertonMonarch-7B
parameters:
density: 0.60
weight: 0.3
merge_method: dare_ties
base_model: cstr/spaetzle-v8-7b
parameters:
int8_mask: true
dtype: bfloat16
random_seed: 0
tokenizer_source: base
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "cstr/Spaetzle-v31-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])