crypter70's picture
Update README.md
e4f8061 verified
metadata
license: mit
base_model: indobenchmark/indobert-base-p1
tags:
  - generated_from_trainer
datasets:
  - indonlu
metrics:
  - accuracy
model-index:
  - name: IndoBERT-Sentiment-Analysis
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: indonlu
          type: indonlu
          config: smsa
          split: validation
          args: smsa
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9452380952380952
language:
  - id
  - en
widget:
  - text: Doi asik bgt orangnya
  - example_title: Example 1
  - text: Ada pengumuman nih gaiss, besok liburr
  - example_title: Example 2
  - text: Kok gitu sih kelakuannya
  - example_title: Example 3

IndoBERT-Sentiment-Analysis

This model is a fine-tuned version of indobenchmark/indobert-base-p1 on the indonlu dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4221
  • Accuracy: 0.9452
  • F1 Score: 0.9451

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 6
  • eval_batch_size: 6
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Score
0.3499 0.27 500 0.2392 0.9310 0.9311
0.3181 0.55 1000 0.3354 0.9175 0.9158
0.3001 0.82 1500 0.2965 0.9238 0.9243
0.2534 1.09 2000 0.3513 0.9222 0.9218
0.1692 1.36 2500 0.2657 0.9405 0.9399
0.1543 1.64 3000 0.4046 0.9198 0.9191
0.1827 1.91 3500 0.2800 0.9317 0.9319
0.1061 2.18 4000 0.3352 0.9389 0.9389
0.0639 2.45 4500 0.4033 0.9373 0.9365
0.0709 2.73 5000 0.3508 0.9365 0.9360
0.0922 3.0 5500 0.3313 0.9397 0.9394
0.0274 3.27 6000 0.3635 0.9444 0.9440
0.0273 3.54 6500 0.4074 0.9389 0.9387
0.0414 3.82 7000 0.3863 0.9405 0.9405
0.0156 4.09 7500 0.4128 0.9413 0.9412
0.0067 4.36 8000 0.4469 0.9397 0.9399
0.0056 4.63 8500 0.4297 0.9444 0.9445
0.0124 4.91 9000 0.4227 0.9452 0.9451

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.1.0.dev20230729
  • Datasets 2.14.0
  • Tokenizers 0.15.2