metadata
language:
- sk
license: mit
tags:
- generated_from_trainer
datasets:
- wikiann
metrics:
- precision
- recall
- f1
- accuracy
inference: false
widget:
- text: Zuzana Čaputová sa narodila 21. júna 1973 v Bratislave.
example_title: Named Entity Recognition
base_model: gerulata/slovakbert
model-index:
- name: slovakbert-ner
results:
- task:
type: token-classification
name: Token Classification
dataset:
name: wikiann
type: wikiann
args: sk
metrics:
- type: precision
value: 0.9327115256495669
name: Precision
- type: recall
value: 0.9470124013528749
name: Recall
- type: f1
value: 0.9398075632132469
name: F1
- type: accuracy
value: 0.9785228256835333
name: Accuracy
Named Entity Recognition based on SlovakBERT
This model is a fine-tuned version of gerulata/slovakbert on the Slovak wikiann dataset. It achieves the following results on the evaluation set:
- Loss: 0.1600
- Precision: 0.9327
- Recall: 0.9470
- F1: 0.9398
- Accuracy: 0.9785
Intended uses & limitations
Supported classes: LOCATION, PERSON, ORGANIZATION
from transformers import pipeline
ner_pipeline = pipeline(task='ner', model='crabz/slovakbert-ner')
input_sentence = "Minister financií a líder mandátovo najsilnejšieho hnutia OĽaNO Igor Matovič upozorňuje, že následky tretej vlny budú na Slovensku veľmi veľké."
classifications = ner_pipeline(input_sentence)
with displaCy
:
import spacy
from spacy import displacy
ner_map = {0: '0', 1: 'B-OSOBA', 2: 'I-OSOBA', 3: 'B-ORGANIZÁCIA', 4: 'I-ORGANIZÁCIA', 5: 'B-LOKALITA', 6: 'I-LOKALITA'}
entities = []
for i in range(len(classifications)):
if classifications[i]['entity'] != 0:
if ner_map[classifications[i]['entity']][0] == 'B':
j = i + 1
while j < len(classifications) and ner_map[classifications[j]['entity']][0] == 'I':
j += 1
entities.append((ner_map[classifications[i]['entity']].split('-')[1], classifications[i]['start'],
classifications[j - 1]['end']))
nlp = spacy.blank("en") # it should work with any language
doc = nlp(input_sentence)
ents = []
for ee in entities:
ents.append(doc.char_span(ee[1], ee[2], ee[0]))
doc.ents = ents
options = {"ents": ["OSOBA", "ORGANIZÁCIA", "LOKALITA"],
"colors": {"OSOBA": "lightblue", "ORGANIZÁCIA": "lightcoral", "LOKALITA": "lightgreen"}}
displacy_html = displacy.render(doc, style="ent", options=options)
Minister financií a líder mandátovo najsilnejšieho hnutia
OĽaNO
ORGANIZÁCIA
Igor Matovič
OSOBA
upozorňuje, že následky tretej vlny budú na
Slovensku
LOKALITA
veľmi veľké.
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15.0
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.2342 | 1.0 | 625 | 0.1233 | 0.8891 | 0.9076 | 0.8982 | 0.9667 |
0.1114 | 2.0 | 1250 | 0.1079 | 0.9118 | 0.9269 | 0.9193 | 0.9725 |
0.0817 | 3.0 | 1875 | 0.1093 | 0.9173 | 0.9315 | 0.9243 | 0.9747 |
0.0438 | 4.0 | 2500 | 0.1076 | 0.9188 | 0.9353 | 0.9270 | 0.9743 |
0.028 | 5.0 | 3125 | 0.1230 | 0.9143 | 0.9387 | 0.9264 | 0.9744 |
0.0256 | 6.0 | 3750 | 0.1204 | 0.9246 | 0.9423 | 0.9334 | 0.9765 |
0.018 | 7.0 | 4375 | 0.1332 | 0.9292 | 0.9416 | 0.9353 | 0.9770 |
0.0107 | 8.0 | 5000 | 0.1339 | 0.9280 | 0.9427 | 0.9353 | 0.9769 |
0.0079 | 9.0 | 5625 | 0.1368 | 0.9326 | 0.9442 | 0.9383 | 0.9785 |
0.0065 | 10.0 | 6250 | 0.1490 | 0.9284 | 0.9445 | 0.9364 | 0.9772 |
0.0061 | 11.0 | 6875 | 0.1566 | 0.9328 | 0.9433 | 0.9380 | 0.9778 |
0.0031 | 12.0 | 7500 | 0.1555 | 0.9339 | 0.9473 | 0.9406 | 0.9787 |
0.0024 | 13.0 | 8125 | 0.1548 | 0.9349 | 0.9462 | 0.9405 | 0.9787 |
0.0015 | 14.0 | 8750 | 0.1562 | 0.9330 | 0.9469 | 0.9399 | 0.9788 |
0.0013 | 15.0 | 9375 | 0.1600 | 0.9327 | 0.9470 | 0.9398 | 0.9785 |
Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0+cu113
- Datasets 1.15.1
- Tokenizers 0.10.3