leaderboard-pr-bot's picture
Adding Evaluation Results
b565fb6 verified
|
raw
history blame
4.15 kB
metadata
license: apache-2.0
model-index:
  - name: openchat-3.5-0106-laser
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 66.04
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cognitivecomputations/openchat-3.5-0106-laser
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 83.18
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cognitivecomputations/openchat-3.5-0106-laser
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 65.11
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cognitivecomputations/openchat-3.5-0106-laser
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 52.08
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cognitivecomputations/openchat-3.5-0106-laser
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 81.45
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cognitivecomputations/openchat-3.5-0106-laser
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 68.92
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cognitivecomputations/openchat-3.5-0106-laser
          name: Open LLM Leaderboard

by David, Fernando and Eric

Sponsored by: VAGO Solutions and HyperSpace.Ai

Join our Discord! https://discord.gg/cognitivecomputations

A laser version of openchat/openchat-3.5-0106

It follows the implementation of laserRMT @ https://github.com/cognitivecomputations/laserRMT

Here, we are controlling layers checking which ones have lower signal to noise ratios (which are more subject to noise), to apply Laser interventions, still using Machenko Pastur to calculate this ratio.

We intend to be the first of a family of experimentations being carried out @ Cognitive Computations.

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 69.46
AI2 Reasoning Challenge (25-Shot) 66.04
HellaSwag (10-Shot) 83.18
MMLU (5-Shot) 65.11
TruthfulQA (0-shot) 52.08
Winogrande (5-shot) 81.45
GSM8k (5-shot) 68.92