|
--- |
|
license: other |
|
tasks: |
|
- code-generation |
|
--- |
|
# Model Card for CodeFuse-CodeLlama-34B |
|
![logo](LOGO.png) |
|
|
|
[[中文]](#chinese) [[English]](#english) |
|
|
|
|
|
|
|
<a id="english"></a> |
|
|
|
## Model Description |
|
|
|
CodeFuse-CodeLlama-34B is a 34B Code-LLM finetuned by QLoRA of multiple code tasks(600k instrunctions/answers) on the base model CodeLlama-34b-Python. |
|
The context length of finetuning is 4K while it is able to be finetuned by 16k context if necessary. |
|
<br> |
|
|
|
## News and Updates |
|
|
|
🔥🔥🔥 CodeFuse-CodeLlama34B-MFT has achived 74.4% of pass@1 on HumanEval, which is SOTA at present. |
|
|
|
<br> |
|
|
|
## Code Community |
|
|
|
**Homepage**: 🏡 https://github.com/codefuse-ai (**Please give us your support with a Star🌟 + Fork🚀 + Watch👀**) |
|
|
|
+ If you wish to fine-tune the model yourself, you can visit ✨[MFTCoder](https://github.com/codefuse-ai/MFTCoder)✨✨ |
|
|
|
+ If you wish to deploy the model yourself, you can visit ✨[FasterTransformer4CodeFuse](https://github.com/codefuse-ai/FasterTransformer4CodeFuse)✨✨ |
|
|
|
+ If you wish to see a demo of the model, you can visit ✨[CodeFuse Demo](https://github.com/codefuse-ai/codefuse)✨✨ |
|
|
|
|
|
## Performance |
|
|
|
|
|
| Model | HumanEval(pass@1) | Date | |
|
|:----------------------------|:-----------------:|:-------:| |
|
| **CodeFuse-CodeLlama-34B** | **74.4%** | 2023.9 | |
|
| WizardCoder-Python-34B-V1.0 | 73.2% | 2023.8 | |
|
| GPT-4(zero-shot) | 67.0% | 2023.3 | |
|
| PanGu-Coder2 15B | 61.6% | 2023.8 | |
|
| CodeLlama-34b-Python | 53.7% | 2023.8 | |
|
| CodeLlama-34b | 48.8% | 2023.8 | |
|
| GPT-3.5(zero-shot) | 48.1% | 2022.11 | |
|
| OctoCoder | 46.2% | 2023.8 | |
|
| StarCoder-15B | 33.6% | 2023.5 | |
|
| LLaMA 2 70B(zero-shot) | 29.9% | 2023.7 | |
|
|
|
<br> |
|
|
|
## Requirements |
|
|
|
* python>=3.8 |
|
* pytorch>=2.0.0 |
|
* transformers==4.32.0 |
|
* Sentencepiece |
|
* CUDA 11.4 |
|
<br> |
|
|
|
## Inference String Format |
|
|
|
The inference string is a concatenated string formed by combining conversation data(system, human and bot contents) in the training data format. It is used as input during the inference process. |
|
Here is an example format of the concatenated string: |
|
|
|
```python |
|
""" |
|
<|role_start|>system<|role_end|>System instruction |
|
<|role_start|>human<|role_end|>Human 1st round input |
|
<|role_start|>bot<|role_end|>Bot 1st round output</s> |
|
<|role_start|>human<|role_end|>Human 2nd round input |
|
<|role_start|>bot<|role_end|>Bot 2nd round output</s> |
|
... |
|
... |
|
... |
|
<|role_start|>human<|role_end|>Human nth round input |
|
<|role_start|>bot<|role_end|>{Bot output to be genreated}</s> |
|
""" |
|
``` |
|
|
|
When applying inference, you always make your input string end with "<|role_start|>bot<|role_end|>" to ask the model generating answers. |
|
|
|
## Quickstart |
|
|
|
```bash |
|
pip install -r requirements.txt |
|
``` |
|
|
|
```python |
|
import torch |
|
from transformers import ( |
|
AutoTokenizer, |
|
AutoModelForCausalLM, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(mode_name_or_path, trust_remote_code=True, use_fast=False, legacy=False) |
|
tokenizer.padding_side = "left" |
|
tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids("<unk>") |
|
tokenizer.eos_token_id = tokenizer.convert_tokens_to_ids("</s>") |
|
# try 4bit loading if cuda memory not enough |
|
model = AutoModelForCausalLM.from_pretrained(mode_name_or_path, |
|
trust_remote_code=True, |
|
load_in_4bit=False, |
|
device_map="auto", |
|
torch_dtype=torch.bfloat16) |
|
model.eval() |
|
|
|
HUMAN_ROLE_START_TAG = "<|role_start|>human<|role_end|>" |
|
BOT_ROLE_START_TAG = "<|role_start|>bot<|role_end|>" |
|
|
|
text = f"{HUMAN_ROLE_START_TAG}write a python function of quick sort.{BOT_ROLE_START_TAG}" |
|
inputs = tokenizer(text, return_tensors='pt', padding=True, add_special_tokens=False).to("cuda") |
|
outputs = model.generate( |
|
inputs=inputs["input_ids"], |
|
attention_mask=inputs["attention_mask"], |
|
max_new_tokens=512, |
|
top_p=0.95, |
|
temperature=0.1, |
|
do_sample=True, |
|
eos_token_id=tokenizer.eos_token_id, |
|
pad_token_id=tokenizer.pad_token_id |
|
) |
|
gen_text = tokenizer.batch_decode(outputs[:, inputs["input_ids"].shape[1]:], skip_special_tokens=True) |
|
print(gen_text) |
|
``` |
|
|
|
## MD5 |
|
We notice that the file may be corrupted during transfer process. Please check MD5 value before use. |
|
|
|
| Model File | MD5 Value | |
|
|:---------------------------------|:--------------------------------:| |
|
| pytorch_model-00001-of-00007.bin | 8d544b1bcb3449934184d4141137329c | |
|
| pytorch_model-00002-of-00007.bin | 9d5dbb30911e48a42fb6d0fcabb322a4 | |
|
| pytorch_model-00003-of-00007.bin | b0d4aecee0457d9332005a187e1fffed | |
|
| pytorch_model-00004-of-00007.bin | 5c7e002de5eab77d0194a2b0f6de0c24 | |
|
| pytorch_model-00005-of-00007.bin | d22a511aa26b5b17117b665a877490ab | |
|
| pytorch_model-00006-of-00007.bin | a5c28ac277fac07d16dd66537e54d109 | |
|
| pytorch_model-00007-of-00007.bin | a967e2c6195477b7407089c0bffa2d53 | |
|
|
|
|
|
<a id="chinese"></a> |
|
|
|
## 模型简介 |
|
|
|
CodeFuse-CodeLlama34B-MFT 是一个通过QLoRA对基座模型CodeLlama-34b-Python进行多代码任务微调的代码大模型。模型微调采用了4k上下文。如果有必要,可以扩展到16k。 |
|
<br> |
|
|
|
## 新闻 |
|
|
|
🔥🔥🔥 CodeFuse-CodeLlama34B-MFT模型在HumanEval pass@1上可以达到74.4%, 为当前开源SOTA。 |
|
|
|
<br> |
|
|
|
## 代码社区 |
|
**大本营**: 🏡 https://github.com/codefuse-ai (**欢迎为我们的项目一键三连 Star🌟 + Fork🚀 + Watch👀**) |
|
|
|
+ 如果您想自己微调该模型,可以访问 ✨[MFTCoder](https://github.com/codefuse-ai/MFTCoder)✨✨ |
|
|
|
+ 如果您想自己部署该模型,可以访问 ✨[FasterTransformer4CodeFuse](https://github.com/codefuse-ai/FasterTransformer4CodeFuse)✨✨ |
|
|
|
+ 如果您想观看该模型示例,可以访问 ✨[CodeFuse Demo](https://github.com/codefuse-ai/codefuse)✨✨ |
|
|
|
|
|
## 评测表现(代码) |
|
|
|
| 模型 | HumanEval(pass@1) | 日期 | |
|
|:----------------------------|:-----------------:|:-------:| |
|
| **CodeFuse-CodeLlama-34B** | **74.4%** | 2023.9 | |
|
| WizardCoder-Python-34B-V1.0 | 73.2% | 2023.8 | |
|
| GPT-4(zero-shot) | 67.0% | 2023.3 | |
|
| PanGu-Coder2 15B | 61.6% | 2023.8 | |
|
| CodeLlama-34b-Python | 53.7% | 2023.8 | |
|
| CodeLlama-34b | 48.8% | 2023.8 | |
|
| GPT-3.5(zero-shot) | 48.1% | 2022.11 | |
|
| OctoCoder | 46.2% | 2023.8 | |
|
| StarCoder-15B | 33.6% | 2023.5 | |
|
| LLaMA 2 70B(zero-shot) | 29.9% | 2023.7 | |
|
|
|
<br> |
|
|
|
## Requirements |
|
|
|
* python>=3.8 |
|
* pytorch>=2.0.0 |
|
* transformers==4.32.0 |
|
* CUDA 11.4 |
|
<br> |
|
|
|
## 推理数据格式 |
|
|
|
推理数据为模型在训练数据格式下拼接的字符串形式,它也是推理时输入prompt拼接的方式: |
|
|
|
```python |
|
""" |
|
<|role_start|>system<|role_end|>这是System指令 |
|
<|role_start|>human<|role_end|>这是第1轮用户输入的问题 |
|
<|role_start|>bot<|role_end|>这是第1轮模型生成的内容</s> |
|
<|role_start|>human<|role_end|>这是第2轮用户输入的问题 |
|
<|role_start|>bot<|role_end|>这是第2轮模型生成的内容</s> |
|
... |
|
... |
|
... |
|
<|role_start|>human<|role_end|>这是第n轮用户输入的问题 |
|
<|role_start|>bot<|role_end|>{模型现在要生成的内容}</s> |
|
""" |
|
``` |
|
|
|
推理时,请确保拼接的prompt字符串以"<|role_start|>bot<|role_end|>"结尾,引导模型生成回答。 |
|
|
|
## 快速使用 |
|
|
|
```python |
|
from transformers import ( |
|
AutoTokenizer, |
|
AutoModelForCausalLM, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(mode_name_or_path, trust_remote_code=True, use_fast=False, legacy=False) |
|
tokenizer.padding_side = "left" |
|
tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids("<unk>") |
|
tokenizer.eos_token_id = tokenizer.convert_tokens_to_ids("</s>") |
|
# 如果显存不够,可以考虑量化加载 |
|
model = AutoModelForCausalLM.from_pretrained(mode_name_or_path, |
|
trust_remote_code=True, |
|
load_in_4bit=False, |
|
device_map="auto", |
|
torch_dtype=torch.bfloat16) |
|
model.eval() |
|
|
|
HUMAN_ROLE_START_TAG = "<|role_start|>human<|role_end|>" |
|
BOT_ROLE_START_TAG = "<|role_start|>bot<|role_end|>" |
|
|
|
text = f"{HUMAN_ROLE_START_TAG}请用C++实现求解第n个斐波那契数{BOT_ROLE_START_TAG}" |
|
inputs = tokenizer(text, return_tensors='pt', padding=True, add_special_tokens=False).to("cuda") |
|
outputs = model.generate( |
|
inputs=inputs["input_ids"], |
|
attention_mask=inputs["attention_mask"], |
|
max_new_tokens=512, |
|
top_p=0.95, |
|
temperature=0.1, |
|
do_sample=True, |
|
eos_token_id=tokenizer.eos_token_id, |
|
pad_token_id=tokenizer.pad_token_id |
|
) |
|
gen_text = tokenizer.batch_decode(outputs[:, inputs["input_ids"].shape[1]:], skip_special_tokens=True) |
|
print(gen_text) |
|
``` |
|
|
|
|
|
## MD5 |
|
我们发现模型文件可能会在传输过程中损坏,使用前请检查文件MD5值。 |
|
|
|
| 模型文件 | MD5值 | |
|
|:---------------------------------|:--------------------------------:| |
|
| pytorch_model-00001-of-00007.bin | 8d544b1bcb3449934184d4141137329c | |
|
| pytorch_model-00002-of-00007.bin | 9d5dbb30911e48a42fb6d0fcabb322a4 | |
|
| pytorch_model-00003-of-00007.bin | b0d4aecee0457d9332005a187e1fffed | |
|
| pytorch_model-00004-of-00007.bin | 5c7e002de5eab77d0194a2b0f6de0c24 | |
|
| pytorch_model-00005-of-00007.bin | d22a511aa26b5b17117b665a877490ab | |
|
| pytorch_model-00006-of-00007.bin | a5c28ac277fac07d16dd66537e54d109 | |
|
| pytorch_model-00007-of-00007.bin | a967e2c6195477b7407089c0bffa2d53 | |