|
# Model Card for CodeFuse-CodeLlama-34B |
|
![Creation Approach](LOGO.png) |
|
|
|
[[中文]](#chinese) [[English]](#english) |
|
|
|
|
|
|
|
<a id="english"></a> |
|
|
|
## Model Description |
|
|
|
CodeFuse-CodeLlama-34B is a 34B Code-LLM finetuned by QLoRA of multiple code tasks(600k instrunctions/answers) on the base model CodeLlama-34b-Python. |
|
The context length of finetuning is 4K while it is able to be finetuned by 16k context if necessary. |
|
<br> |
|
|
|
## News and Updates |
|
|
|
🔥🔥🔥 CodeFuse-CodeLlama34B-MFT has achived 74.4% of pass@1 on HumanEval, which is SOTA at present. |
|
|
|
<br> |
|
|
|
## Performance |
|
|
|
| Model | HumanEval(pass@1) | |
|
| :---------------------------- | :---------------: | |
|
| CodeLlama-34b | 48.8%(greedy decoding) | |
|
| CodeLlama-34b-Python | 53.7%(greedy decoding) | |
|
| **CodeFuse-CodeLlama-34B** | **74.4%**(greedy decoding) | |
|
|
|
<br> |
|
|
|
## Requirements |
|
|
|
* python>=3.8 |
|
* pytorch>=2.0.0 |
|
* transformers==4.32.0 |
|
* Sentencepiece |
|
* CUDA 11.4 |
|
<br> |
|
|
|
## Inference String Format |
|
|
|
The inference string is a concatenated string formed by combining conversation data(system, human and bot contents) in the training data format. It is used as input during the inference process. |
|
Here is an example format of the concatenated string: |
|
|
|
```python |
|
""" |
|
<|role_start|>system<|role_end|>System instruction |
|
<|role_start|>human<|role_end|>Human 1st round input |
|
<|role_start|>bot<|role_end|>Bot 1st round output</s> |
|
<|role_start|>human<|role_end|>Human 2nd round input |
|
<|role_start|>bot<|role_end|>Bot 2nd round output</s> |
|
... |
|
... |
|
... |
|
<|role_start|>human<|role_end|>Human nth round input |
|
<|role_start|>bot<|role_end|>{Bot output to be genreated}</s> |
|
""" |
|
``` |
|
|
|
When applying inference, you always make your input string end with "<|role_start|>bot<|role_end|>" to ask the model generating answers. |
|
|
|
## Quickstart |
|
|
|
```bash |
|
pip install -r requirements.txt |
|
``` |
|
|
|
```python |
|
from transformers import ( |
|
AutoTokenizer, |
|
AutoModelForCausalLM, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(mode_name_or_path, trust_remote_code=True, use_fast=False, legacy=False) |
|
tokenizer.padding_side = "left" |
|
tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids("<unk>") |
|
tokenizer.eos_token_id = tokenizer.convert_tokens_to_ids("</s>") |
|
model = AutoModelForCausalLM.from_pretrained(mode_name_or_path, trust_remote_code=True) |
|
|
|
HUMAN_ROLE_START_TAG = "<|role_start|>human<|role_end|>" |
|
BOT_ROLE_START_TAG = "<|role_start|>bot<|role_end|>" |
|
|
|
text = f"{HUMAN_ROLE_START_TAG}write a python function of quick sort.{BOT_ROLE_START_TAG}" |
|
inputs = tokenizer(text, return_tensors='pt', padding=True, add_special_tokens=False).to("cuda") |
|
outputs = model.generate( |
|
inputs=inputs["input_ids"], |
|
attention_mask=inputs["attention_mask"], |
|
max_new_tokens=512, |
|
top_p=0.95, |
|
temperature=0.1, |
|
do_sample=True, |
|
eos_token_id=tokenizer.eos_token_id, |
|
pad_token_id=tokenizer.pad_token_id |
|
) |
|
gen_text = tokenizer.batch_decode(outputs[:, inputs["input_ids"].shape[1]:], skip_special_tokens=True) |
|
print(gen_text) |
|
``` |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<a id="chinese"></a> |
|
|
|
## 模型简介 |
|
|
|
CodeFuse-CodeLlama34B-MFT 是一个通过QLoRA对基座模型CodeLlama-34b-Python进行多代码任务微调的代码大模型。模型微调采用了4k上下文。如果有必要,可以扩展到16k。 |
|
<br> |
|
|
|
## 新闻 |
|
|
|
🔥🔥🔥 CodeFuse-CodeLlama34B-MFT模型在HumanEval pass@1上可以达到74.4%, 为当前开源SOTA。 |
|
|
|
<br> |
|
|
|
## 评测表现(代码) |
|
|
|
| 模型 | HumanEval(pass@1) | |
|
| :---------------------------- | :---------------: | |
|
| CodeLlama-34b | 48.8%(greedy decoding) | |
|
| CodeLlama-34b-Python | 53.7%(greedy decoding) | |
|
| **CodeFuse-CodeLlama-34B** | **74.4%**(greedy decoding) | |
|
<br> |
|
|
|
## Requirements |
|
|
|
* python>=3.8 |
|
* pytorch>=2.0.0 |
|
* transformers==4.32.0 |
|
* CUDA 11.4 |
|
<br> |
|
|
|
## 推理数据格式 |
|
|
|
推理数据为模型在训练数据格式下拼接的字符串形式,它也是推理时输入prompt拼接的方式: |
|
|
|
```python |
|
""" |
|
<|role_start|>system<|role_end|>这是System指令 |
|
<|role_start|>human<|role_end|>这是第1轮用户输入的问题 |
|
<|role_start|>bot<|role_end|>这是第1轮模型生成的内容</s> |
|
<|role_start|>human<|role_end|>这是第2轮用户输入的问题 |
|
<|role_start|>bot<|role_end|>这是第2轮模型生成的内容</s> |
|
... |
|
... |
|
... |
|
<|role_start|>human<|role_end|>这是第n轮用户输入的问题 |
|
<|role_start|>bot<|role_end|>{模型现在要生成的内容}</s> |
|
""" |
|
``` |
|
|
|
推理时,请确保拼接的prompt字符串以"<|role_start|>bot<|role_end|>"结尾,引导模型生成回答。 |
|
|
|
## 快速使用 |
|
|
|
```python |
|
from transformers import ( |
|
AutoTokenizer, |
|
AutoModelForCausalLM, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(mode_name_or_path, trust_remote_code=True, use_fast=False, legacy=False) |
|
tokenizer.padding_side = "left" |
|
tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids("<unk>") |
|
tokenizer.eos_token_id = tokenizer.convert_tokens_to_ids("</s>") |
|
model = AutoModelForCausalLM.from_pretrained(mode_name_or_path, trust_remote_code=True) |
|
|
|
HUMAN_ROLE_START_TAG = "<|role_start|>human<|role_end|>" |
|
BOT_ROLE_START_TAG = "<|role_start|>bot<|role_end|>" |
|
|
|
text = f"{HUMAN_ROLE_START_TAG}write a python function of quick sort.{BOT_ROLE_START_TAG}" |
|
inputs = tokenizer(text, return_tensors='pt', padding=True, add_special_tokens=False).to("cuda") |
|
outputs = model.generate( |
|
inputs=inputs["input_ids"], |
|
attention_mask=inputs["attention_mask"], |
|
max_new_tokens=512, |
|
top_p=0.95, |
|
temperature=0.1, |
|
do_sample=True, |
|
eos_token_id=tokenizer.eos_token_id, |
|
pad_token_id=tokenizer.pad_token_id |
|
) |
|
gen_text = tokenizer.batch_decode(outputs[:, inputs["input_ids"].shape[1]:], skip_special_tokens=True) |
|
print(gen_text) |
|
``` |
|
|
|
|
|
|