|
--- |
|
license: other |
|
tasks: |
|
- code-generation |
|
--- |
|
# Model Card for CodeFuse-13B |
|
|
|
![logo](LOGO.png) |
|
|
|
|
|
[[中文]](#chinese) [[English]](#english) |
|
|
|
<a id="english"></a> |
|
|
|
|
|
## Model Description |
|
CodeFuse-13B is a 13 billion parameter code generation model trained on the GPT-NeoX framework, capable of handling code sequences of up to 4096 characters. This model was pretrained on a dataset consisting of 1000B token code, Chinese, and English data, covering over 40 programming languages. To further enhance the effectiveness and quality of the generated code, the model was fine-tuned on the CodeFuse-Evol-instruction-66k dataset, enabling it to produce more accurate, efficient, and compliant code. Pass@1 achieved 37.1% on the HumanEval evaluation set(BeamSearch strategy, BeamSize=3). |
|
|
|
|
|
## Code Community |
|
|
|
**Homepage**: 🏡 https://github.com/codefuse-ai (**Please give us your support with a Star🌟 + Fork🚀 + Watch👀**) |
|
|
|
+ If you wish to fine-tune the model yourself, you can visit ✨[MFTCoder](https://github.com/codefuse-ai/MFTCoder)✨✨ |
|
|
|
+ If you wish to deploy the model yourself, you can visit ✨[FasterTransformer4CodeFuse](https://github.com/codefuse-ai/FasterTransformer4CodeFuse)✨✨ |
|
|
|
+ If you wish to see a demo of the model, you can visit ✨[CodeFuse Demo](https://github.com/codefuse-ai/codefuse)✨✨ |
|
|
|
|
|
## Requirements |
|
* Python 3.8 or above. |
|
* PyTorch 1.12 or above, with a recommendation for 2.0 or above. |
|
* Transformers 4.24.0 or above. |
|
* It is advisable to use CUDA 11.4 or above (for GPU users and flash-attention users, this option should be considered). |
|
|
|
|
|
## Quickstart |
|
|
|
``` |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(("CodeFuse-13B")) |
|
model = AutoModelForCausalLM.from_pretrained(("CodeFuse-13B"), device_map="auto").half().eval() |
|
|
|
input_ids = tokenizer.encode("# language: Python\ndef quick_sort(array):\n", return_tensors="pt").to("cuda") |
|
output_ids = model.generate(input_ids, max_new_tokens=200) |
|
|
|
print(tokenizer.decode(output_ids[0])) |
|
``` |
|
|
|
## MD5 |
|
We notice that the file may be corrupted during transfer process. Please check MD5 value before use. |
|
|
|
| Model File | MD5 Value | |
|
|:---------------------------------|:--------------------------------:| |
|
| pytorch_model-00001-of-00006.bin | b79e4ccc93c40fa6113aaf6a434473d5 | |
|
| pytorch_model-00002-of-00006.bin | 5a82f19e3f62c693e41fe627084c722b | |
|
| pytorch_model-00003-of-00006.bin | d4b53c391a353d0fc0a1be1c913d5f04 | |
|
| pytorch_model-00004-of-00006.bin | f9e3dcdea13ff02f4e3aad4f9db7a33f | |
|
| pytorch_model-00005-of-00006.bin | 698a8f2f05723a572193733bce12eb93 | |
|
| pytorch_model-00006-of-00006.bin | 312439d0b810f1bb81034fe094ff84c7 | |
|
|
|
<a id="chinese"></a> |
|
|
|
## 简介 |
|
CodeFuse-13B是基于GPT-NeoX框架训练的13B参数代码生成模型,能够处理4096个字符的代码序列。该模型在1000B Token的代码、中文、英文数据数据集上进行预训练,覆盖超过40种编程语言。为了进一步提升生成代码的效果和质量,该模型还在CodeFuse-Evol-instruction-66k数据集上进行了微调,使得该模型能够生成更加准确、高效、符合要求的代码。在HumanEval评测集上Pass@1达到37.1%(采用BeamSearch解码,其中BeamSize=3)。 |
|
|
|
|
|
## 代码社区 |
|
**大本营**: 🏡 https://github.com/codefuse-ai (**欢迎为我们的项目一键三连 Star🌟 + Fork🚀 + Watch👀**) |
|
|
|
+ 如果您想自己微调该模型,可以访问 ✨[MFTCoder](https://github.com/codefuse-ai/MFTCoder)✨✨ |
|
|
|
+ 如果您想自己部署该模型,可以访问 ✨[FasterTransformer4CodeFuse](https://github.com/codefuse-ai/FasterTransformer4CodeFuse)✨✨ |
|
|
|
+ 如果您想观看该模型示例,可以访问 ✨[CodeFuse Demo](https://github.com/codefuse-ai/codefuse)✨✨ |
|
|
|
|
|
## 要求 |
|
* python 3.8及以上版本 |
|
* pytorch 1.12及以上版本,推荐2.0及以上版本 |
|
* transformers 4.24.0及以上版本 |
|
* 建议使用CUDA 11.4及以上(GPU用户、flash-attention用户等需考虑此选项)。 |
|
|
|
|
|
## 快速使用 |
|
|
|
``` |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(("CodeFuse-13B")) |
|
model = AutoModelForCausalLM.from_pretrained(("CodeFuse-13B"), device_map="auto").half().eval() |
|
|
|
input_ids = tokenizer.encode("# language: Python\ndef quick_sort(array):\n", return_tensors="pt").to("cuda") |
|
output_ids = model.generate(input_ids, max_new_tokens=200) |
|
|
|
print(tokenizer.decode(output_ids[0])) |
|
``` |
|
|
|
## MD5 |
|
我们发现模型文件可能会在传输过程中损坏,使用前请检查文件MD5值。 |
|
|
|
| 模型文件 | MD5值 | |
|
|:---------------------------------|:--------------------------------:| |
|
| pytorch_model-00001-of-00006.bin | b79e4ccc93c40fa6113aaf6a434473d5 | |
|
| pytorch_model-00002-of-00006.bin | 5a82f19e3f62c693e41fe627084c722b | |
|
| pytorch_model-00003-of-00006.bin | d4b53c391a353d0fc0a1be1c913d5f04 | |
|
| pytorch_model-00004-of-00006.bin | f9e3dcdea13ff02f4e3aad4f9db7a33f | |
|
| pytorch_model-00005-of-00006.bin | 698a8f2f05723a572193733bce12eb93 | |
|
| pytorch_model-00006-of-00006.bin | 312439d0b810f1bb81034fe094ff84c7 | |
|
|