w2v-bert-2.0-wol-v1 / README.md
cibfaye's picture
End of training
f964fb9 verified
metadata
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: w2v-bert-2.0-wol-v1
    results: []

w2v-bert-2.0-wol-v1

This model is a fine-tuned version of facebook/w2v-bert-2.0 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1008
  • Wer: 0.0792

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.6351 0.6857 300 0.2974 0.3040
0.4591 1.3714 600 0.2215 0.2307
0.3833 2.0571 900 0.1950 0.1900
0.329 2.7429 1200 0.1637 0.1614
0.2797 3.4286 1500 0.1515 0.1479
0.2558 4.1143 1800 0.1435 0.1337
0.2166 4.8 2100 0.1296 0.1295
0.1876 5.4857 2400 0.1178 0.1129
0.1695 6.1714 2700 0.1107 0.1005
0.137 6.8571 3000 0.1064 0.0933
0.1078 7.5429 3300 0.1049 0.0929
0.0904 8.2286 3600 0.1002 0.0871
0.0685 8.9143 3900 0.0973 0.0810
0.049 9.6 4200 0.1008 0.0792

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1