Wav2Vec2-Large-XLSR-53-Fon
Fine-tuned facebook/wav2vec2-large-xlsr-53 on Fon (or Fongbe) using the Fon Dataset.
When using this model, make sure that your speech input is sampled at 16kHz.
Usage
The model can be used directly (without a language model) as follows:
import json
import random
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
#Load test_dataset from saved files in folder
from datasets import load_dataset, load_metric
#for test
for root, dirs, files in os.walk(test/):
test_dataset= load_dataset("json", data_files=[os.path.join(root,i) for i in files],split="train")
#Remove unnecessary chars
chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\%\\‘\\”]'
def remove_special_characters(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
return batch
test_dataset = test_dataset.map(remove_special_characters)
processor = Wav2Vec2Processor.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon")
model = Wav2Vec2ForCTC.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon")
#No need for resampling because audio dataset already at 16kHz
#resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"]=speech_array.squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
Evaluation
The model can be evaluated as follows on our unique Fon test data.
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
for root, dirs, files in os.walk(test/):
test_dataset = load_dataset("json", data_files=[os.path.join(root,i) for i in files],split="train")
chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\%\\‘\\”]'
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
return batch
test_dataset = test_dataset.map(remove_special_characters)
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon")
model = Wav2Vec2ForCTC.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon")
model.to("cuda")
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = speech_array[0].numpy()
batch["sampling_rate"] = sampling_rate
batch["target_text"] = batch["sentence"]
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
#Evaluation on test dataset
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
Test Result: 14.97 %
Training
The Fon dataset was split into train
(8235 samples), validation
(1107 samples), and test
(1061 samples).
The script used for training can be found here
Collaborators on this project
- Chris C. Emezue (Twitter)|([email protected])
- Bonaventure F.P. Dossou (HuggingFace Username: bonadossou)|(Twitter)|([email protected])
This is a joint project continuing our research on OkwuGbé: End-to-End Speech Recognition for Fon and Igbo
- Downloads last month
- 139
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.