tags: | |
- generated_from_trainer | |
metrics: | |
- rouge | |
base_model: google/pegasus-newsroom | |
model-index: | |
- name: pegasus-newsroom-summarizer_02 | |
results: [] | |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You | |
should probably proofread and complete it, then remove this comment. --> | |
# pegasus-newsroom-summarizer_02 | |
This model is a fine-tuned version of [google/pegasus-newsroom](https://huggingface.co/google/pegasus-newsroom) on an unknown dataset. | |
It achieves the following results on the evaluation set: | |
- Loss: 1.2204 | |
- Rouge1: 52.4459 | |
- Rouge2: 35.2568 | |
- Rougel: 41.6213 | |
- Rougelsum: 48.7859 | |
- Gen Len: 98.0627 | |
## Model description | |
More information needed | |
## Intended uses & limitations | |
More information needed | |
## Training and evaluation data | |
More information needed | |
## Training procedure | |
### Training hyperparameters | |
The following hyperparameters were used during training: | |
- learning_rate: 2e-05 | |
- train_batch_size: 1 | |
- eval_batch_size: 1 | |
- seed: 42 | |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 | |
- lr_scheduler_type: linear | |
- num_epochs: 3 | |
- mixed_precision_training: Native AMP | |
### Training results | |
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | | |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | |
| 1.3231 | 1.0 | 16113 | 1.2305 | 52.1565 | 34.8681 | 41.3189 | 48.4258 | 95.9049 | | |
| 1.3001 | 2.0 | 32226 | 1.2186 | 52.4921 | 35.2661 | 41.6264 | 48.8168 | 98.9241 | | |
| 1.2372 | 3.0 | 48339 | 1.2204 | 52.4459 | 35.2568 | 41.6213 | 48.7859 | 98.0627 | | |
### Framework versions | |
- Transformers 4.12.3 | |
- Pytorch 1.9.0+cu111 | |
- Datasets 1.15.1 | |
- Tokenizers 0.10.3 | |