tags: | |
- generated_from_trainer | |
metrics: | |
- rouge | |
base_model: google/pegasus-newsroom | |
model-index: | |
- name: pegasus-newsroom-rewriter | |
results: [] | |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You | |
should probably proofread and complete it, then remove this comment. --> | |
# pegasus-newsroom-rewriter | |
This model is a fine-tuned version of [google/pegasus-newsroom](https://huggingface.co/google/pegasus-newsroom) on an unknown dataset. | |
It achieves the following results on the evaluation set: | |
- Loss: 1.3424 | |
- Rouge1: 46.6856 | |
- Rouge2: 31.6377 | |
- Rougel: 33.2741 | |
- Rougelsum: 44.5003 | |
- Gen Len: 126.58 | |
## Model description | |
More information needed | |
## Intended uses & limitations | |
More information needed | |
## Training and evaluation data | |
More information needed | |
## Training procedure | |
### Training hyperparameters | |
The following hyperparameters were used during training: | |
- learning_rate: 2e-05 | |
- train_batch_size: 1 | |
- eval_batch_size: 1 | |
- seed: 42 | |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 | |
- lr_scheduler_type: linear | |
- num_epochs: 4 | |
- mixed_precision_training: Native AMP | |
### Training results | |
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | | |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | |
| No log | 1.0 | 450 | 1.4020 | 47.0593 | 32.2065 | 33.9168 | 44.901 | 126.32 | | |
| 1.9944 | 2.0 | 900 | 1.3567 | 46.2635 | 30.9959 | 32.933 | 44.1659 | 126.48 | | |
| 1.6511 | 3.0 | 1350 | 1.3449 | 46.1544 | 30.7257 | 32.693 | 43.9977 | 126.4 | | |
| 1.5951 | 4.0 | 1800 | 1.3424 | 46.6856 | 31.6377 | 33.2741 | 44.5003 | 126.58 | | |
### Framework versions | |
- Transformers 4.17.0 | |
- Pytorch 1.10.0+cu111 | |
- Datasets 2.0.0 | |
- Tokenizers 0.11.6 | |