tags: | |
- generated_from_trainer | |
metrics: | |
- rouge | |
base_model: google/pegasus-newsroom | |
model-index: | |
- name: pegasus-newsroom-headline_writer_57k | |
results: [] | |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You | |
should probably proofread and complete it, then remove this comment. --> | |
# pegasus-newsroom-headline_writer_57k | |
This model is a fine-tuned version of [google/pegasus-newsroom](https://huggingface.co/google/pegasus-newsroom) on an unknown dataset. | |
It achieves the following results on the evaluation set: | |
- Loss: 1.3599 | |
- Rouge1: 42.2586 | |
- Rouge2: 23.2731 | |
- Rougel: 35.8685 | |
- Rougelsum: 36.0581 | |
- Gen Len: 34.3651 | |
## Model description | |
More information needed | |
## Intended uses & limitations | |
More information needed | |
## Training and evaluation data | |
More information needed | |
## Training procedure | |
### Training hyperparameters | |
The following hyperparameters were used during training: | |
- learning_rate: 2e-05 | |
- train_batch_size: 8 | |
- eval_batch_size: 8 | |
- seed: 42 | |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 | |
- lr_scheduler_type: linear | |
- num_epochs: 3 | |
- mixed_precision_training: Native AMP | |
### Training results | |
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | | |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | |
| 1.5213 | 1.0 | 5670 | 1.4040 | 41.8648 | 22.8205 | 35.3983 | 35.535 | 34.8817 | | |
| 1.4171 | 2.0 | 11340 | 1.3672 | 42.26 | 23.2611 | 35.8016 | 35.9753 | 34.3492 | | |
| 1.3722 | 3.0 | 17010 | 1.3599 | 42.2586 | 23.2731 | 35.8685 | 36.0581 | 34.3651 | | |
### Framework versions | |
- Transformers 4.23.1 | |
- Pytorch 1.12.1+cu113 | |
- Datasets 2.6.0 | |
- Tokenizers 0.13.1 | |