|
--- |
|
license: other |
|
library_name: peft |
|
tags: |
|
- llama-factory |
|
- lora |
|
- generated_from_trainer |
|
base_model: chargoddard/internlm2-20b-llama |
|
model-index: |
|
- name: model-update |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# model-update |
|
|
|
This model is a fine-tuned version of [chargoddard/internlm2-20b-llama](https://huggingface.co/chargoddard/internlm2-20b-llama) on the oncc_medqa_instruct dataset. |
|
|
|
## Training procedure |
|
|
|
``` |
|
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py --stage sft --do_train True --model_name_or_path /workspace/model --finetuning_type lora --quantization_bit 4 --flash_attn True --dataset_dir data --cutoff_len 1024 --learning_rate 0.0005 --num_train_epochs 1.0 --max_samples 10000 --lr_scheduler_type cosine --max_grad_norm 1.0 --logging_steps 10 --save_steps 100 --warmup_steps 20 --neftune_noise_alpha 0.5 --lora_rank 8 --lora_dropout 0.2 --output_dir /workspace/model-update --per_device_train_batch_size 4 --gradient_accumulation_steps 4 --lora_target q_proj,v_proj --template llama2 --dataset oncc_medqa_instruct |
|
``` |
|
Note: fix the bug in the tokenizer_config.json. i.e. "internlm/internlm2-20b--tokenization_internlm2.InternLM2Tokenizer" |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0005 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 20 |
|
- num_epochs: 1.0 |
|
|
|
### Training results |
|
|
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.8.2 |
|
- Transformers 4.37.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.15.2 |