NaturalSQL-6.7B-v0 / README.md
cfahlgren1's picture
cfahlgren1 HF staff
readme updates
7ff1bba verified
|
raw
history blame
5.87 kB
---
base_model: deepseek-ai/deepseek-coder-6.7b-instruct
tags:
- instruct
- finetune
model-index:
- name: NaturalSQL-6.7B-v0.1
results: []
license: other
license_name: deepseek
language:
- en
datasets:
- cfahlgren1/wiki-sql-codellama-expanded
- cfahlgren1/natural-sql
---
# **NaturalSQL-6.7B-v0.1**
### NaturalSQL is a series of models with state-of-the-art performance on Text to SQL instructions.
<img src="https://cdn-uploads.huggingface.co/production/uploads/648a374f00f7a3374ee64b99/hafdsfrFCqrVbATIzV_EN.png" width="600">
**NaturalSQL** is a LLM that can translate natural language queries to SQL based on your schema. It is finetuned on 8k text to PostgreSQL Natural Language <> SQL pairs.
NaturalSQL matches the state of the art models in text to sql for it's size and produces the best in the field for complex questions.
Here is a write up, small test done [here](https://chatdb.ai/post/naturalsql-vs-sqlcoder-for-text-to-sql).
# Table of Contents
1. [Benchmarks](#benchmarks)
- [SQL-Eval on novel datasets not seen in training](#sql-eval-on-novel-datasets-not-seen-in-training)
- [SQL-Eval by SQL Category](#sql-eval-by-sql-category)
2. [Future Improvements](#future-improvements)
3. [Usage](#usage)
- [Loading the Model](#loading-the-model)
- [Generating Text](#generating-text)
4. [SQL Generation Template](#sql-generation-template)
5. [Example SQL Output](#example-sql-output)
- [Example Schemas](#example-schemas)
- [Example SQL Outputs](#example-sql-outputs)
## Benchmarks
## SQL-Eval on novel datasets not seen in training
<img src="https://cdn-uploads.huggingface.co/production/uploads/648a374f00f7a3374ee64b99/IZpVHJJzmapQ0gKV0Fb3q.png" width="800">
<em>Big thanks to the [defog](https://huggingface.co/defog) team for open sourcing [sql-eval](https://github.com/defog-ai/sql-eval)</em>👏
## SQL-Eval by SQL Category
**NaturalSQL-6.7B-v0 matches or outperforms other industry leading models in multiple categories!**
<img src="https://cdn-uploads.huggingface.co/production/uploads/648a374f00f7a3374ee64b99/waXAf7crQQSqITp07BwEs.png" width="800">
_The **date** category will be a strong focus in the next iteration of `v1`._
## Future Improvements
- Much larger training set
- More complex schemas, questions, and queries
- Strong focus on Date Queries
- Reward modeling via DPO
# Usage
Make sure you have the correct version of the transformers library installed:
```sh
pip install transformers==4.35.2
```
### Loading the Model
Use the following Python code to load the model:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("cfahlgren1/NaturalSQL-6.7B-v0")
model = AutoModelForCausalLM.from_pretrained(
"cfahlgren1/NaturalSQL-6.7B-v0",
device_map="auto",
torch_dtype=torch.float16,
)
```
### Generating Text
To generate text, use the following Python code. [Here](https://gist.github.com/cfahlgren1/ba17f01cf688c4229686dc3dfb4d4549) is a full notebook with the SQL table prompt format to use.
```python
messages=[
{ 'role': 'user', 'content': prompt}
]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
# 32023 is the id of <|EOT|> token
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=32023)
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
```
# SQL Generation Template
```
### Task
Generate a SQL query to answer the following question: `{natural language question}`
### Database Schema
The query will run on a database with the following schema:
'''
<SQL Table DDL Statements>
'''
### Answer
Here is the SQL query that answers the question: `{natural language question}`
'''sql
```
# Example SQL Output
### Example Schemas
```sql
CREATE TABLE users (
user_id SERIAL PRIMARY KEY,
username VARCHAR(50) NOT NULL,
email VARCHAR(100) NOT NULL,
password_hash TEXT NOT NULL,
created_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP
);
CREATE TABLE projects (
project_id SERIAL PRIMARY KEY,
project_name VARCHAR(100) NOT NULL,
description TEXT,
start_date DATE,
end_date DATE,
owner_id INTEGER REFERENCES users(user_id)
);
CREATE TABLE tasks (
task_id SERIAL PRIMARY KEY,
task_name VARCHAR(100) NOT NULL,
description TEXT,
due_date DATE,
status VARCHAR(50),
project_id INTEGER REFERENCES projects(project_id)
);
CREATE TABLE taskassignments (
assignment_id SERIAL PRIMARY KEY,
task_id INTEGER REFERENCES tasks(task_id),
user_id INTEGER REFERENCES users(user_id),
assigned_date DATE NOT NULL DEFAULT CURRENT_TIMESTAMP
);
CREATE TABLE comments (
comment_id SERIAL PRIMARY KEY,
content TEXT NOT NULL,
created_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
task_id INTEGER REFERENCES tasks(task_id),
user_id INTEGER REFERENCES users(user_id)
);
```
### Example SQL Outputs
**Question**: **Show me the day with the most users joining**
```sql
SELECT created_at::DATE AS day, COUNT(*) AS user_count
FROM users
GROUP BY day
ORDER BY user_count DESC
LIMIT 1;
```
**Question**: **Show me the project that has a task with the most comments**
```sql
SELECT p.project_name, t.task_name, COUNT(c.comment_id) AS comment_count
FROM projects p
JOIN tasks t ON p.project_id = t.project_id
JOIN comments c ON t.task_id = c.task_id
GROUP BY p.project_name, t.task_name
ORDER BY comment_count DESC
LIMIT 1;
```
**Question**: **What is the ratio of users with gmail addresses vs without?**
```sql
SELECT
SUM(CASE WHEN email ILIKE '%@gmail.com%' THEN 1 ELSE 0 END)::FLOAT / NULLIF(SUM(CASE WHEN email NOT ILIKE '%@gmail.com%' THEN 1 ELSE 0 END), 0) AS gmail_ratio
FROM
users;
```