|
--- |
|
base_model: deepseek-ai/deepseek-coder-6.7b-instruct |
|
tags: |
|
- SOLAR |
|
- instruct |
|
- finetune |
|
model-index: |
|
- name: NaturalQuery-Solar-6.7B-v0.1 |
|
results: [] |
|
license: apache-2.0 |
|
language: |
|
- en |
|
datasets: |
|
- wikisql |
|
--- |
|
|
|
# **NaturalQuery-Solar-6.7B-v0.1** |
|
|
|
**NaturalQuery** is a LLM that can translate natural language queries to SQL based on your schema. |
|
|
|
NaturalQuery-v0.1 is finetuned on 8k text to PostgreSQL Natural Language <> SQL pairs. |
|
|
|
**Future Improvements**: |
|
|
|
- Much larger training set |
|
- More complex schemas, questions, and queries |
|
- Reward modeling via DPO |
|
- Benchmarking |
|
|
|
# **Usage** |
|
|
|
Make sure you have the correct version of the transformers library installed: |
|
|
|
```sh |
|
pip install transformers==4.35.2 |
|
``` |
|
|
|
### **Loading the Model** |
|
|
|
Use the following Python code to load the model: |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
tokenizer = AutoTokenizer.from_pretrained("cfahlgren1/NaturalSQL-6.7B-v0") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"cfahlgren1/NaturalSQL-6.7B-v0", |
|
device_map="auto", |
|
torch_dtype=torch.float16, |
|
) |
|
``` |
|
|
|
### **Generating Text** |
|
|
|
To generate text, use the following Python code: |
|
|
|
```python |
|
text = "Hi, my name is " |
|
inputs = tokenizer(text, return_tensors="pt") |
|
outputs = model.generate(**inputs, max_new_tokens=64) |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
``` |
|
|
|
|
|
# **SQL Generation Template** |
|
|
|
``` |
|
### Task |
|
|
|
Generate a SQL query to answer the following question: `{natural language question}` |
|
|
|
### Database Schema |
|
|
|
The query will run on a database with the following schema: |
|
|
|
''' |
|
<SQL Table DDL Statements> |
|
''' |
|
|
|
### Answer |
|
Here is the SQL query that answers the question: `{natural language question}` |
|
'''sql |
|
``` |
|
|
|
# **Example SQL Output** |
|
|
|
### **Example Schemas** |
|
|
|
```sql |
|
CREATE TABLE |
|
table_1_11545282_6 ( |
|
"No." numeric, |
|
Nationality text, |
|
"Years for Jazz" text |
|
); |
|
|
|
CREATE TABLE |
|
table_2_17383560_1 ( |
|
Pick numeric, |
|
Round numeric, |
|
Player text, |
|
"School/Club Team" text, |
|
Position text |
|
); |
|
|
|
CREATE TABLE |
|
table_1_10581768_2 ( |
|
Institution text, |
|
Enrollment numeric, |
|
Nickname text, |
|
Founded numeric |
|
); |
|
``` |
|
|
|
**Question**: **What is the round of pick 63?** |
|
```sql |
|
SELECT "Round" FROM table_2_17383560_1 WHERE Pick=63; |
|
``` |
|
**Question**: **What is the most popular position among players?** |
|
```sql |
|
SELECT COUNT("Position") FROM "table_2_17383560_1" GROUP BY "Position" ORDER BY COUNT("Position") DESC LIMIT 1; |
|
``` |
|
|
|
**Question**: **What is the most recent year an institution was founded?** |
|
```sql |
|
SELECT MAX("Founded") FROM table_1_10581768_2; |
|
``` |