metadata
base_model: indobenchmark/indobert-base-p2
datasets: []
language: []
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:133472
- loss:SoftmaxLoss
widget:
- source_sentence: >-
Dua tim anak-anak, yang satu berwarna hijau dan yang lainnya berwarna
merah, bermain bersama dalam permainan Rugby saat hujan.
sentences:
- Tiga orang berada di dalam perahu.
- seorang pria di atas sepeda
- Tim rugby anak-anak, merah versus hijau bermain di tengah hujan.
- source_sentence: Seorang pria melakukan perawatan di rel kereta api
sentences:
- Dua orang terlibat dalam percakapan.
- Ada seorang wanita melakukan pekerjaan di rel kereta api.
- orang-orang duduk di bar
- source_sentence: Sepasang suami istri dengan pakaian renang berjalan di pantai.
sentences:
- pasangan itu duduk di dalam
- Pria itu sedang makan.
- Dua orang sedang berpose untuk difoto.
- source_sentence: Dua orang sedang duduk di samping api unggun bertumpuk kayu di malam hari.
sentences:
- Seseorang memegang jeruk dan berjalan
- Orang-orang duduk di luar di malam hari.
- Orang-orang berada di luar.
- source_sentence: >-
Wanita profesional di meja pendaftaran acara sementara pria berjas
melihat.
sentences:
- Orang-orang berkumpul untuk sebuah acara.
- Seorang wanita sedang berjalan menuju taman.
- Ada seorang anak yang tersenyum untuk difoto.
model-index:
- name: SentenceTransformer based on indobenchmark/indobert-base-p2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.23146247451934734
name: Pearson Cosine
- type: spearman_cosine
value: 0.23182555096720683
name: Spearman Cosine
- type: pearson_manhattan
value: 0.19847600869622337
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.2038189662328075
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.198744291061789
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.20385658228775938
name: Spearman Euclidean
- type: pearson_dot
value: 0.2561502821889763
name: Pearson Dot
- type: spearman_dot
value: 0.25101474046220823
name: Spearman Dot
- type: pearson_max
value: 0.2561502821889763
name: Pearson Max
- type: spearman_max
value: 0.25101474046220823
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.5914831439397401
name: Pearson Cosine
- type: spearman_cosine
value: 0.5978838704506128
name: Spearman Cosine
- type: pearson_manhattan
value: 0.5131648451956073
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.5147175261736068
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.5942850778734059
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6001963453484881
name: Spearman Euclidean
- type: pearson_dot
value: 0.5880400881430983
name: Pearson Dot
- type: spearman_dot
value: 0.5933998114680769
name: Spearman Dot
- type: pearson_max
value: 0.5942850778734059
name: Pearson Max
- type: spearman_max
value: 0.6001963453484881
name: Spearman Max
SentenceTransformer based on indobenchmark/indobert-base-p2
This is a sentence-transformers model finetuned from indobenchmark/indobert-base-p2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: indobenchmark/indobert-base-p2
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("cassador/indobert-snli-v1")
# Run inference
sentences = [
'Wanita profesional di meja pendaftaran acara sementara pria berjas melihat.',
'Orang-orang berkumpul untuk sebuah acara.',
'Ada seorang anak yang tersenyum untuk difoto.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.2315 |
spearman_cosine | 0.2318 |
pearson_manhattan | 0.1985 |
spearman_manhattan | 0.2038 |
pearson_euclidean | 0.1987 |
spearman_euclidean | 0.2039 |
pearson_dot | 0.2562 |
spearman_dot | 0.251 |
pearson_max | 0.2562 |
spearman_max | 0.251 |
Semantic Similarity
- Dataset:
sts-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.5915 |
spearman_cosine | 0.5979 |
pearson_manhattan | 0.5132 |
spearman_manhattan | 0.5147 |
pearson_euclidean | 0.5943 |
spearman_euclidean | 0.6002 |
pearson_dot | 0.588 |
spearman_dot | 0.5934 |
pearson_max | 0.5943 |
spearman_max | 0.6002 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 133,472 training samples
- Columns:
label
,kalimat1
, andkalimat2
- Approximate statistics based on the first 1000 samples:
label kalimat1 kalimat2 type int string string details - 0: ~50.00%
- 1: ~50.00%
- min: 5 tokens
- mean: 16.47 tokens
- max: 48 tokens
- min: 4 tokens
- mean: 9.62 tokens
- max: 22 tokens
- Samples:
label kalimat1 kalimat2 0
Seseorang di atas kuda melompati pesawat yang rusak.
Seseorang sedang makan malam, memesan telur dadar.
1
Seseorang di atas kuda melompati pesawat yang rusak.
Seseorang berada di luar ruangan, di atas kuda.
1
Anak-anak tersenyum dan melambai ke kamera
Ada anak-anak yang hadir
- Loss:
SoftmaxLoss
Evaluation Dataset
Unnamed Dataset
- Size: 6,607 evaluation samples
- Columns:
label
,kalimat1
, andkalimat2
- Approximate statistics based on the first 1000 samples:
label kalimat1 kalimat2 type int string string details - 0: ~50.10%
- 1: ~49.90%
- min: 5 tokens
- mean: 16.87 tokens
- max: 49 tokens
- min: 3 tokens
- mean: 9.45 tokens
- max: 27 tokens
- Samples:
label kalimat1 kalimat2 1
Dua wanita berpelukan sambil memegang paket untuk pergi.
Dua wanita memegang paket.
0
Dua wanita berpelukan sambil memegang paket untuk pergi.
Orang-orang berkelahi di luar toko makanan.
1
Dua anak kecil berbaju biru, satu dengan nomor 9 dan satu dengan nomor 2 berdiri di tangga kayu di kamar mandi dan mencuci tangan di wastafel.
Dua anak dengan kaus bernomor mencuci tangan mereka.
- Loss:
SoftmaxLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32learning_rate
: 2e-05num_train_epochs
: 2warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | sts-dev_spearman_cosine | sts-test_spearman_cosine |
---|---|---|---|
0 | 0 | 0.2318 | - |
2.0 | 8342 | - | 0.5979 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers and SoftmaxLoss
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}