|
--- |
|
language: |
|
- id |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:10000 |
|
- loss:SoftmaxLoss |
|
base_model: indobenchmark/indobert-base-p2 |
|
datasets: |
|
- afaji/indonli |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
widget: |
|
- source_sentence: '"Berbagai macam jenis minuman sehat untuk mengembalikan ion ataupun |
|
mengandung vitamin, dapat kita temui dengan mudah di sekitar."' |
|
sentences: |
|
- Moody's tidak memiliki metrik peringkat untuk penerbit sekuritas yang dikenai |
|
pajak. |
|
- Lupa olahraga adalah alasan yang selalu digunakan untuk tak berolahraga. |
|
- Minuman sehat sulit ditemui. |
|
- source_sentence: Mayweather menepis anggapan bahwa McGregor yang merupakan petarung |
|
kidal mungkin menyebabkan masalah baginya. |
|
sentences: |
|
- Cimahi Selatan merupakan sebuah Kecamatan di Kota Cimahi. |
|
- Masyarakat umum dilibatkan untuk memberikan respon dalam acara dengar pendapat |
|
CRTC. |
|
- McGregor dan Mayweather pernah bertarung dengan sengit. |
|
- source_sentence: Wonosobo adalah salah satu kabupaten yang terdapat di Provinsi |
|
Jawa Tengah. |
|
sentences: |
|
- Tidak terdapat kabupaten di Provinsi Jawa Tengah. |
|
- Nogizaka46 sekarang sudah merilis 25 singel. |
|
- Joko Driyono adalah Wakil Ketua Umum PSSI. |
|
- source_sentence: Bangunan ini digunakan untuk penjualan berbagai material. ' |
|
sentences: |
|
- Istri bisa mengidamkan makanan yang mudah dicari. |
|
- Saluran telepon tidak digunakan oleh FastNet dalam menyediakan akses internet. |
|
- Bangunan ini digunakan untuk penjualan. |
|
- source_sentence: Set album musik pengiring seri film Harry Potter akan dirilis dalam |
|
versi baru. |
|
sentences: |
|
- Seri film Harry Potter memiliki set album musik pengiring. |
|
- Daya tahan tubuh bayi tidak terjaga walaupun diberi ASI. |
|
- Laga dan kolosal adalah genre film. |
|
pipeline_tag: sentence-similarity |
|
model-index: |
|
- name: SentenceTransformer based on indobenchmark/indobert-base-p2 |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev |
|
type: sts-dev |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.3021139089985203 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.30301169986128346 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.2767840491173264 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.2725949754810958 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.3071661849384816 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.3044966278223258 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.3039090779569512 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.3047234168200123 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.3071661849384816 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.3047234168200123 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test |
|
type: sts-test |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.10382066164158449 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.09693567465932618 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.07492996229311771 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.07823414156216839 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.09422022261567607 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.09902189422521299 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.10695495102872325 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.09978448101169902 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.10695495102872325 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.09978448101169902 |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer based on indobenchmark/indobert-base-p2 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2) on the [afaji/indonli](https://huggingface.co/datasets/afaji/indonli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2) <!-- at revision 94b4e0a82081fa57f227fcc2024d1ea89b57ac1f --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- [afaji/indonli](https://huggingface.co/datasets/afaji/indonli) |
|
- **Language:** id |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("cassador/indobert-base-p2-nli-v2") |
|
# Run inference |
|
sentences = [ |
|
'Set album musik pengiring seri film Harry Potter akan dirilis dalam versi baru.', |
|
'Seri film Harry Potter memiliki set album musik pengiring.', |
|
'Laga dan kolosal adalah genre film.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:----------| |
|
| pearson_cosine | 0.3021 | |
|
| **spearman_cosine** | **0.303** | |
|
| pearson_manhattan | 0.2768 | |
|
| spearman_manhattan | 0.2726 | |
|
| pearson_euclidean | 0.3072 | |
|
| spearman_euclidean | 0.3045 | |
|
| pearson_dot | 0.3039 | |
|
| spearman_dot | 0.3047 | |
|
| pearson_max | 0.3072 | |
|
| spearman_max | 0.3047 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.1038 | |
|
| **spearman_cosine** | **0.0969** | |
|
| pearson_manhattan | 0.0749 | |
|
| spearman_manhattan | 0.0782 | |
|
| pearson_euclidean | 0.0942 | |
|
| spearman_euclidean | 0.099 | |
|
| pearson_dot | 0.107 | |
|
| spearman_dot | 0.0998 | |
|
| pearson_max | 0.107 | |
|
| spearman_max | 0.0998 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### afaji/indonli |
|
|
|
* Dataset: [afaji/indonli](https://huggingface.co/datasets/afaji/indonli) |
|
* Size: 10,000 training samples |
|
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | premise | hypothesis | label | |
|
|:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------| |
|
| type | string | string | int | |
|
| details | <ul><li>min: 12 tokens</li><li>mean: 29.73 tokens</li><li>max: 179 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.93 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>0: ~68.60%</li><li>1: ~31.40%</li></ul> | |
|
* Samples: |
|
| premise | hypothesis | label | |
|
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------|:---------------| |
|
| <code>Presiden Joko Widodo (Jokowi) menyampaikan prediksi bahwa wabah virus Corona (COVID-19) di Indonesia akan selesai akhir tahun ini.</code> | <code>Prediksi akhir wabah tidak disampaikan Jokowi.</code> | <code>0</code> | |
|
| <code>Meski biasanya hanya digunakan di fasilitas kesehatan, saat ini masker dan sarung tangan sekali pakai banyak dipakai di tingkat rumah tangga.</code> | <code>Masker sekali pakai banyak dipakai di tingkat rumah tangga.</code> | <code>1</code> | |
|
| <code>Data dari Nielsen Music mencatat, "Joanne" telah terjual 201 ribu kopi di akhir minggu ini, seperti dilansir aceshowbiz.com.</code> | <code>Nielsen Music mencatat pada akhir minggu ini.</code> | <code>0</code> | |
|
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss) |
|
|
|
### Evaluation Dataset |
|
|
|
#### afaji/indonli |
|
|
|
* Dataset: [afaji/indonli](https://huggingface.co/datasets/afaji/indonli) |
|
* Size: 2,000 evaluation samples |
|
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | premise | hypothesis | label | |
|
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------| |
|
| type | string | string | int | |
|
| details | <ul><li>min: 9 tokens</li><li>mean: 28.09 tokens</li><li>max: 179 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.01 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>0: ~63.00%</li><li>1: ~37.00%</li></ul> | |
|
* Samples: |
|
| premise | hypothesis | label | |
|
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------|:---------------| |
|
| <code>Manuskrip tersebut berisi tiga catatan yang menceritakan bagaimana peristiwa jatuhnya meteorit serta laporan kematian akibat kejadian tersebut seperti dilansir dari Science Alert, Sabtu (25/4/2020).</code> | <code>Manuskrip tersebut tidak mencatat laporan kematian.</code> | <code>0</code> | |
|
| <code>Dilansir dari Business Insider, menurut observasi dari Mauna Loa Observatory di Hawaii pada karbon dioksida (CO2) di level mencapai 410 ppm tidak langsung memberikan efek pada pernapasan, karena tubuh manusia juga masih membutuhkan CO2 dalam kadar tertentu.</code> | <code>Tidak ada observasi yang pernah dilansir oleh Business Insider.</code> | <code>0</code> | |
|
| <code>Perekonomian Jakarta terutama ditunjang oleh sektor perdagangan, jasa, properti, industri kreatif, dan keuangan.</code> | <code>Sektor jasa memberi pengaruh lebih besar daripada industri kreatif dalam perekonomian Jakarta.</code> | <code>0</code> | |
|
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss) |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: epoch |
|
- `learning_rate`: 1e-05 |
|
- `num_train_epochs`: 10 |
|
- `warmup_ratio`: 0.001 |
|
- `fp16`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: epoch |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 8 |
|
- `per_device_eval_batch_size`: 8 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 1e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 10 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.001 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
<details><summary>Click to expand</summary> |
|
|
|
| Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine | |
|
|:------:|:-----:|:-------------:|:------:|:-----------------------:|:------------------------:| |
|
| 0 | 0 | - | - | 0.1928 | - | |
|
| 0.04 | 100 | 1.1407 | - | - | - | |
|
| 0.08 | 200 | 0.7456 | - | - | - | |
|
| 0.12 | 300 | 0.6991 | - | - | - | |
|
| 0.16 | 400 | 0.6653 | - | - | - | |
|
| 0.2 | 500 | 0.6317 | - | - | - | |
|
| 0.24 | 600 | 0.5975 | - | - | - | |
|
| 0.28 | 700 | 0.5955 | - | - | - | |
|
| 0.32 | 800 | 0.6168 | - | - | - | |
|
| 0.36 | 900 | 0.5851 | - | - | - | |
|
| 0.4 | 1000 | 0.591 | - | - | - | |
|
| 0.44 | 1100 | 0.6063 | - | - | - | |
|
| 0.48 | 1200 | 0.6122 | - | - | - | |
|
| 0.52 | 1300 | 0.5881 | - | - | - | |
|
| 0.56 | 1400 | 0.59 | - | - | - | |
|
| 0.6 | 1500 | 0.5715 | - | - | - | |
|
| 0.64 | 1600 | 0.5725 | - | - | - | |
|
| 0.68 | 1700 | 0.5771 | - | - | - | |
|
| 0.72 | 1800 | 0.5935 | - | - | - | |
|
| 0.76 | 1900 | 0.584 | - | - | - | |
|
| 0.8 | 2000 | 0.5829 | - | - | - | |
|
| 0.84 | 2100 | 0.5507 | - | - | - | |
|
| 0.88 | 2200 | 0.5447 | - | - | - | |
|
| 0.92 | 2300 | 0.6059 | - | - | - | |
|
| 0.96 | 2400 | 0.5389 | - | - | - | |
|
| 1.0 | 2500 | 0.639 | 0.5432 | 0.4007 | - | |
|
| 1.04 | 2600 | 0.463 | - | - | - | |
|
| 1.08 | 2700 | 0.4936 | - | - | - | |
|
| 1.12 | 2800 | 0.4966 | - | - | - | |
|
| 1.16 | 2900 | 0.4588 | - | - | - | |
|
| 1.2 | 3000 | 0.5148 | - | - | - | |
|
| 1.24 | 3100 | 0.5043 | - | - | - | |
|
| 1.28 | 3200 | 0.5048 | - | - | - | |
|
| 1.32 | 3300 | 0.4803 | - | - | - | |
|
| 1.3600 | 3400 | 0.465 | - | - | - | |
|
| 1.4 | 3500 | 0.5133 | - | - | - | |
|
| 1.44 | 3600 | 0.5505 | - | - | - | |
|
| 1.48 | 3700 | 0.4498 | - | - | - | |
|
| 1.52 | 3800 | 0.5418 | - | - | - | |
|
| 1.56 | 3900 | 0.5268 | - | - | - | |
|
| 1.6 | 4000 | 0.4546 | - | - | - | |
|
| 1.6400 | 4100 | 0.5279 | - | - | - | |
|
| 1.6800 | 4200 | 0.5309 | - | - | - | |
|
| 1.72 | 4300 | 0.487 | - | - | - | |
|
| 1.76 | 4400 | 0.5371 | - | - | - | |
|
| 1.8 | 4500 | 0.5097 | - | - | - | |
|
| 1.8400 | 4600 | 0.5242 | - | - | - | |
|
| 1.88 | 4700 | 0.4583 | - | - | - | |
|
| 1.92 | 4800 | 0.4923 | - | - | - | |
|
| 1.96 | 4900 | 0.5028 | - | - | - | |
|
| 2.0 | 5000 | 0.5139 | 0.6274 | 0.4335 | - | |
|
| 2.04 | 5100 | 0.322 | - | - | - | |
|
| 2.08 | 5200 | 0.389 | - | - | - | |
|
| 2.12 | 5300 | 0.3633 | - | - | - | |
|
| 2.16 | 5400 | 0.3868 | - | - | - | |
|
| 2.2 | 5500 | 0.3798 | - | - | - | |
|
| 2.24 | 5600 | 0.4385 | - | - | - | |
|
| 2.2800 | 5700 | 0.3965 | - | - | - | |
|
| 2.32 | 5800 | 0.3895 | - | - | - | |
|
| 2.36 | 5900 | 0.4484 | - | - | - | |
|
| 2.4 | 6000 | 0.3452 | - | - | - | |
|
| 2.44 | 6100 | 0.3905 | - | - | - | |
|
| 2.48 | 6200 | 0.376 | - | - | - | |
|
| 2.52 | 6300 | 0.4986 | - | - | - | |
|
| 2.56 | 6400 | 0.3732 | - | - | - | |
|
| 2.6 | 6500 | 0.3632 | - | - | - | |
|
| 2.64 | 6600 | 0.3915 | - | - | - | |
|
| 2.68 | 6700 | 0.4394 | - | - | - | |
|
| 2.7200 | 6800 | 0.3852 | - | - | - | |
|
| 2.76 | 6900 | 0.3984 | - | - | - | |
|
| 2.8 | 7000 | 0.426 | - | - | - | |
|
| 2.84 | 7100 | 0.3274 | - | - | - | |
|
| 2.88 | 7200 | 0.4673 | - | - | - | |
|
| 2.92 | 7300 | 0.4599 | - | - | - | |
|
| 2.96 | 7400 | 0.4304 | - | - | - | |
|
| 3.0 | 7500 | 0.4151 | 0.8967 | 0.4007 | - | |
|
| 3.04 | 7600 | 0.2345 | - | - | - | |
|
| 3.08 | 7700 | 0.1807 | - | - | - | |
|
| 3.12 | 7800 | 0.2984 | - | - | - | |
|
| 3.16 | 7900 | 0.2357 | - | - | - | |
|
| 3.2 | 8000 | 0.4506 | - | - | - | |
|
| 3.24 | 8100 | 0.2178 | - | - | - | |
|
| 3.2800 | 8200 | 0.2654 | - | - | - | |
|
| 3.32 | 8300 | 0.2863 | - | - | - | |
|
| 3.36 | 8400 | 0.2626 | - | - | - | |
|
| 3.4 | 8500 | 0.3281 | - | - | - | |
|
| 3.44 | 8600 | 0.2555 | - | - | - | |
|
| 3.48 | 8700 | 0.4245 | - | - | - | |
|
| 3.52 | 8800 | 0.2368 | - | - | - | |
|
| 3.56 | 8900 | 0.3288 | - | - | - | |
|
| 3.6 | 9000 | 0.3417 | - | - | - | |
|
| 3.64 | 9100 | 0.3249 | - | - | - | |
|
| 3.68 | 9200 | 0.3378 | - | - | - | |
|
| 3.7200 | 9300 | 0.233 | - | - | - | |
|
| 3.76 | 9400 | 0.3215 | - | - | - | |
|
| 3.8 | 9500 | 0.251 | - | - | - | |
|
| 3.84 | 9600 | 0.3138 | - | - | - | |
|
| 3.88 | 9700 | 0.3081 | - | - | - | |
|
| 3.92 | 9800 | 0.3875 | - | - | - | |
|
| 3.96 | 9900 | 0.3231 | - | - | - | |
|
| 4.0 | 10000 | 0.2119 | 1.4983 | 0.4129 | - | |
|
| 4.04 | 10100 | 0.1323 | - | - | - | |
|
| 4.08 | 10200 | 0.2222 | - | - | - | |
|
| 4.12 | 10300 | 0.2005 | - | - | - | |
|
| 4.16 | 10400 | 0.127 | - | - | - | |
|
| 4.2 | 10500 | 0.1052 | - | - | - | |
|
| 4.24 | 10600 | 0.1657 | - | - | - | |
|
| 4.28 | 10700 | 0.2305 | - | - | - | |
|
| 4.32 | 10800 | 0.1048 | - | - | - | |
|
| 4.36 | 10900 | 0.2081 | - | - | - | |
|
| 4.4 | 11000 | 0.201 | - | - | - | |
|
| 4.44 | 11100 | 0.1515 | - | - | - | |
|
| 4.48 | 11200 | 0.2112 | - | - | - | |
|
| 4.52 | 11300 | 0.1936 | - | - | - | |
|
| 4.5600 | 11400 | 0.1578 | - | - | - | |
|
| 4.6 | 11500 | 0.2551 | - | - | - | |
|
| 4.64 | 11600 | 0.2888 | - | - | - | |
|
| 4.68 | 11700 | 0.128 | - | - | - | |
|
| 4.72 | 11800 | 0.2172 | - | - | - | |
|
| 4.76 | 11900 | 0.114 | - | - | - | |
|
| 4.8 | 12000 | 0.2135 | - | - | - | |
|
| 4.84 | 12100 | 0.2421 | - | - | - | |
|
| 4.88 | 12200 | 0.2392 | - | - | - | |
|
| 4.92 | 12300 | 0.1478 | - | - | - | |
|
| 4.96 | 12400 | 0.1901 | - | - | - | |
|
| 5.0 | 12500 | 0.2219 | 1.9582 | 0.3469 | - | |
|
| 5.04 | 12600 | 0.1586 | - | - | - | |
|
| 5.08 | 12700 | 0.1587 | - | - | - | |
|
| 5.12 | 12800 | 0.0663 | - | - | - | |
|
| 5.16 | 12900 | 0.0703 | - | - | - | |
|
| 5.2 | 13000 | 0.0783 | - | - | - | |
|
| 5.24 | 13100 | 0.1143 | - | - | - | |
|
| 5.28 | 13200 | 0.1155 | - | - | - | |
|
| 5.32 | 13300 | 0.0661 | - | - | - | |
|
| 5.36 | 13400 | 0.0935 | - | - | - | |
|
| 5.4 | 13500 | 0.1344 | - | - | - | |
|
| 5.44 | 13600 | 0.1031 | - | - | - | |
|
| 5.48 | 13700 | 0.1294 | - | - | - | |
|
| 5.52 | 13800 | 0.103 | - | - | - | |
|
| 5.5600 | 13900 | 0.0739 | - | - | - | |
|
| 5.6 | 14000 | 0.1477 | - | - | - | |
|
| 5.64 | 14100 | 0.1171 | - | - | - | |
|
| 5.68 | 14200 | 0.1504 | - | - | - | |
|
| 5.72 | 14300 | 0.1122 | - | - | - | |
|
| 5.76 | 14400 | 0.1279 | - | - | - | |
|
| 5.8 | 14500 | 0.0813 | - | - | - | |
|
| 5.84 | 14600 | 0.1372 | - | - | - | |
|
| 5.88 | 14700 | 0.1615 | - | - | - | |
|
| 5.92 | 14800 | 0.1944 | - | - | - | |
|
| 5.96 | 14900 | 0.0436 | - | - | - | |
|
| 6.0 | 15000 | 0.1195 | 2.2220 | 0.3559 | - | |
|
| 0.08 | 100 | 0.0844 | - | - | - | |
|
| 0.16 | 200 | 0.1357 | - | - | - | |
|
| 0.24 | 300 | 0.1382 | - | - | - | |
|
| 0.32 | 400 | 0.2091 | - | - | - | |
|
| 0.4 | 500 | 0.2351 | - | - | - | |
|
| 0.48 | 600 | 0.2976 | - | - | - | |
|
| 0.56 | 700 | 0.3408 | - | - | - | |
|
| 0.64 | 800 | 0.2656 | - | - | - | |
|
| 0.72 | 900 | 0.3183 | - | - | - | |
|
| 0.8 | 1000 | 0.2513 | - | - | - | |
|
| 0.88 | 1100 | 0.2293 | - | - | - | |
|
| 0.96 | 1200 | 0.3241 | - | - | - | |
|
| 1.0 | 1250 | - | 1.1813 | 0.3495 | - | |
|
| 0.3195 | 100 | 0.6132 | - | - | - | |
|
| 0.6390 | 200 | 0.1554 | - | - | - | |
|
| 0.9585 | 300 | 0.1366 | - | - | - | |
|
| 1.0 | 313 | - | 1.2867 | 0.3839 | - | |
|
| 0.08 | 100 | 0.2713 | - | - | - | |
|
| 0.16 | 200 | 0.1273 | - | - | - | |
|
| 0.24 | 300 | 0.0883 | - | - | - | |
|
| 0.32 | 400 | 0.0749 | - | - | - | |
|
| 0.08 | 100 | 0.0653 | - | - | - | |
|
| 0.16 | 200 | 0.0311 | - | - | - | |
|
| 0.24 | 300 | 0.0368 | - | - | - | |
|
| 0.32 | 400 | 0.0259 | - | - | - | |
|
| 0.4 | 500 | 0.059 | - | - | - | |
|
| 0.48 | 600 | 0.046 | - | - | - | |
|
| 0.56 | 700 | 0.1266 | - | - | - | |
|
| 0.64 | 800 | 0.0661 | - | - | - | |
|
| 0.72 | 900 | 0.0676 | - | - | - | |
|
| 0.8 | 1000 | 0.0759 | - | - | - | |
|
| 0.88 | 1100 | 0.0527 | - | - | - | |
|
| 0.96 | 1200 | 0.1038 | - | - | - | |
|
| 1.0 | 1250 | - | 2.2411 | 0.3892 | - | |
|
| 1.04 | 1300 | 0.0456 | - | - | - | |
|
| 1.12 | 1400 | 0.1363 | - | - | - | |
|
| 1.2 | 1500 | 0.1398 | - | - | - | |
|
| 1.28 | 1600 | 0.1237 | - | - | - | |
|
| 1.3600 | 1700 | 0.123 | - | - | - | |
|
| 1.44 | 1800 | 0.1893 | - | - | - | |
|
| 1.52 | 1900 | 0.1192 | - | - | - | |
|
| 1.6 | 2000 | 0.1347 | - | - | - | |
|
| 1.6800 | 2100 | 0.0937 | - | - | - | |
|
| 1.76 | 2200 | 0.1506 | - | - | - | |
|
| 1.8400 | 2300 | 0.1366 | - | - | - | |
|
| 1.92 | 2400 | 0.1194 | - | - | - | |
|
| 2.0 | 2500 | 0.1485 | 2.1340 | 0.3245 | - | |
|
| 2.08 | 2600 | 0.0485 | - | - | - | |
|
| 2.16 | 2700 | 0.0579 | - | - | - | |
|
| 2.24 | 2800 | 0.0932 | - | - | - | |
|
| 2.32 | 2900 | 0.0743 | - | - | - | |
|
| 2.4 | 3000 | 0.0783 | - | - | - | |
|
| 2.48 | 3100 | 0.0918 | - | - | - | |
|
| 2.56 | 3200 | 0.0973 | - | - | - | |
|
| 2.64 | 3300 | 0.0623 | - | - | - | |
|
| 2.7200 | 3400 | 0.1284 | - | - | - | |
|
| 2.8 | 3500 | 0.1247 | - | - | - | |
|
| 2.88 | 3600 | 0.0648 | - | - | - | |
|
| 2.96 | 3700 | 0.0921 | - | - | - | |
|
| 3.0 | 3750 | - | 2.4354 | 0.2824 | - | |
|
| 3.04 | 3800 | 0.04 | - | - | - | |
|
| 3.12 | 3900 | 0.0417 | - | - | - | |
|
| 3.2 | 4000 | 0.0414 | - | - | - | |
|
| 3.2800 | 4100 | 0.0485 | - | - | - | |
|
| 3.36 | 4200 | 0.0255 | - | - | - | |
|
| 3.44 | 4300 | 0.0688 | - | - | - | |
|
| 3.52 | 4400 | 0.0574 | - | - | - | |
|
| 3.6 | 4500 | 0.0766 | - | - | - | |
|
| 3.68 | 4600 | 0.0481 | - | - | - | |
|
| 3.76 | 4700 | 0.06 | - | - | - | |
|
| 3.84 | 4800 | 0.0528 | - | - | - | |
|
| 3.92 | 4900 | 0.0426 | - | - | - | |
|
| 4.0 | 5000 | 0.092 | 2.5427 | 0.3284 | - | |
|
| 4.08 | 5100 | 0.0349 | - | - | - | |
|
| 4.16 | 5200 | 0.0107 | - | - | - | |
|
| 4.24 | 5300 | 0.0608 | - | - | - | |
|
| 4.32 | 5400 | 0.0473 | - | - | - | |
|
| 4.4 | 5500 | 0.0452 | - | - | - | |
|
| 4.48 | 5600 | 0.0316 | - | - | - | |
|
| 4.5600 | 5700 | 0.0096 | - | - | - | |
|
| 4.64 | 5800 | 0.0511 | - | - | - | |
|
| 4.72 | 5900 | 0.0207 | - | - | - | |
|
| 4.8 | 6000 | 0.0061 | - | - | - | |
|
| 4.88 | 6100 | 0.0381 | - | - | - | |
|
| 4.96 | 6200 | 0.0378 | - | - | - | |
|
| 5.0 | 6250 | - | 2.6061 | 0.3061 | - | |
|
| 5.04 | 6300 | 0.0326 | - | - | - | |
|
| 5.12 | 6400 | 0.0349 | - | - | - | |
|
| 5.2 | 6500 | 0.0128 | - | - | - | |
|
| 5.28 | 6600 | 0.0185 | - | - | - | |
|
| 5.36 | 6700 | 0.0145 | - | - | - | |
|
| 5.44 | 6800 | 0.0521 | - | - | - | |
|
| 5.52 | 6900 | 0.0427 | - | - | - | |
|
| 5.6 | 7000 | 0.0215 | - | - | - | |
|
| 5.68 | 7100 | 0.0195 | - | - | - | |
|
| 5.76 | 7200 | 0.0426 | - | - | - | |
|
| 5.84 | 7300 | 0.057 | - | - | - | |
|
| 5.92 | 7400 | 0.0106 | - | - | - | |
|
| 6.0 | 7500 | 0.0284 | 2.8348 | 0.3291 | - | |
|
| 6.08 | 7600 | 0.0286 | - | - | - | |
|
| 6.16 | 7700 | 0.018 | - | - | - | |
|
| 6.24 | 7800 | 0.0224 | - | - | - | |
|
| 6.32 | 7900 | 0.0102 | - | - | - | |
|
| 6.4 | 8000 | 0.0287 | - | - | - | |
|
| 6.48 | 8100 | 0.0078 | - | - | - | |
|
| 6.5600 | 8200 | 0.0237 | - | - | - | |
|
| 6.64 | 8300 | 0.0148 | - | - | - | |
|
| 6.72 | 8400 | 0.0271 | - | - | - | |
|
| 6.8 | 8500 | 0.015 | - | - | - | |
|
| 6.88 | 8600 | 0.0278 | - | - | - | |
|
| 6.96 | 8700 | 0.0237 | - | - | - | |
|
| 7.0 | 8750 | - | 2.8785 | 0.3188 | - | |
|
| 7.04 | 8800 | 0.0203 | - | - | - | |
|
| 7.12 | 8900 | 0.0089 | - | - | - | |
|
| 7.2 | 9000 | 0.0121 | - | - | - | |
|
| 7.28 | 9100 | 0.0185 | - | - | - | |
|
| 7.36 | 9200 | 0.0127 | - | - | - | |
|
| 7.44 | 9300 | 0.017 | - | - | - | |
|
| 7.52 | 9400 | 0.0117 | - | - | - | |
|
| 7.6 | 9500 | 0.006 | - | - | - | |
|
| 7.68 | 9600 | 0.0061 | - | - | - | |
|
| 7.76 | 9700 | 0.0141 | - | - | - | |
|
| 7.84 | 9800 | 0.0091 | - | - | - | |
|
| 7.92 | 9900 | 0.0164 | - | - | - | |
|
| 8.0 | 10000 | 0.0244 | 2.8054 | 0.3040 | - | |
|
| 8.08 | 10100 | 0.0001 | - | - | - | |
|
| 8.16 | 10200 | 0.0187 | - | - | - | |
|
| 8.24 | 10300 | 0.0098 | - | - | - | |
|
| 8.32 | 10400 | 0.0114 | - | - | - | |
|
| 8.4 | 10500 | 0.004 | - | - | - | |
|
| 8.48 | 10600 | 0.0017 | - | - | - | |
|
| 8.56 | 10700 | 0.0018 | - | - | - | |
|
| 8.64 | 10800 | 0.009 | - | - | - | |
|
| 8.72 | 10900 | 0.0047 | - | - | - | |
|
| 8.8 | 11000 | 0.0014 | - | - | - | |
|
| 8.88 | 11100 | 0.0049 | - | - | - | |
|
| 8.96 | 11200 | 0.006 | - | - | - | |
|
| 9.0 | 11250 | - | 2.9460 | 0.2967 | - | |
|
| 9.04 | 11300 | 0.0057 | - | - | - | |
|
| 9.12 | 11400 | 0.0051 | - | - | - | |
|
| 9.2 | 11500 | 0.0067 | - | - | - | |
|
| 9.28 | 11600 | 0.0009 | - | - | - | |
|
| 9.36 | 11700 | 0.0046 | - | - | - | |
|
| 9.44 | 11800 | 0.0138 | - | - | - | |
|
| 9.52 | 11900 | 0.0067 | - | - | - | |
|
| 9.6 | 12000 | 0.0043 | - | - | - | |
|
| 9.68 | 12100 | 0.001 | - | - | - | |
|
| 9.76 | 12200 | 0.0004 | - | - | - | |
|
| 9.84 | 12300 | 0.0044 | - | - | - | |
|
| 9.92 | 12400 | 0.003 | - | - | - | |
|
| 10.0 | 12500 | 0.0055 | 2.9714 | 0.3030 | 0.0969 | |
|
|
|
</details> |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.41.2 |
|
- PyTorch: 2.3.0+cu121 |
|
- Accelerate: 0.31.0 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers and SoftmaxLoss |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |