c-alfano's picture
Model save
17c4a69 verified
|
raw
history blame
2.84 kB
metadata
library_name: transformers
license: gemma
base_model: google/gemma-7b
tags:
  - trl
  - orpo
  - generated_from_trainer
model-index:
  - name: gemma-7b-borpo-low-quality-v4
    results: []

gemma-7b-borpo-low-quality-v4

This model is a fine-tuned version of google/gemma-7b on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9080
  • Rewards/chosen: -0.6019
  • Rewards/rejected: -0.7507
  • Rewards/accuracies: 0.6259
  • Rewards/margins: 0.1488
  • Logps/rejected: -1.5015
  • Logps/chosen: -1.2038
  • Logits/rejected: 247.6263
  • Logits/chosen: 282.0085
  • Nll Loss: 1.5545
  • Log Odds Ratio: -0.6477
  • Log Odds Chosen: 0.4230

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: inverse_sqrt
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen Nll Loss Log Odds Ratio Log Odds Chosen
1.8238 0.9955 167 1.8176 -0.5378 -0.6319 0.5468 0.0941 -1.2637 -1.0755 293.2744 322.6454 1.4783 -0.6631 0.2616
1.3092 1.9970 335 1.7560 -0.5202 -0.6309 0.5324 0.1106 -1.2617 -1.0405 279.0659 309.3900 1.4054 -0.6637 0.3224
0.6827 2.9866 501 1.9080 -0.6019 -0.7507 0.6259 0.1488 -1.5015 -1.2038 247.6263 282.0085 1.5545 -0.6477 0.4230

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1