metadata
library_name: transformers
license: gemma
base_model: google/gemma-7b
tags:
- trl
- orpo
- generated_from_trainer
model-index:
- name: gemma-7b-borpo-low-quality-v4
results: []
gemma-7b-borpo-low-quality-v4
This model is a fine-tuned version of google/gemma-7b on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.9080
- Rewards/chosen: -0.6019
- Rewards/rejected: -0.7507
- Rewards/accuracies: 0.6259
- Rewards/margins: 0.1488
- Logps/rejected: -1.5015
- Logps/chosen: -1.2038
- Logits/rejected: 247.6263
- Logits/chosen: 282.0085
- Nll Loss: 1.5545
- Log Odds Ratio: -0.6477
- Log Odds Chosen: 0.4230
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: inverse_sqrt
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Nll Loss | Log Odds Ratio | Log Odds Chosen |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.8238 | 0.9955 | 167 | 1.8176 | -0.5378 | -0.6319 | 0.5468 | 0.0941 | -1.2637 | -1.0755 | 293.2744 | 322.6454 | 1.4783 | -0.6631 | 0.2616 |
1.3092 | 1.9970 | 335 | 1.7560 | -0.5202 | -0.6309 | 0.5324 | 0.1106 | -1.2617 | -1.0405 | 279.0659 | 309.3900 | 1.4054 | -0.6637 | 0.3224 |
0.6827 | 2.9866 | 501 | 1.9080 | -0.6019 | -0.7507 | 0.6259 | 0.1488 | -1.5015 | -1.2038 | 247.6263 | 282.0085 | 1.5545 | -0.6477 | 0.4230 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1