metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.81
distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.6676
- Accuracy: 0.81
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.2592 | 1.0 | 75 | 2.2017 | 0.35 |
1.8413 | 2.0 | 150 | 1.8071 | 0.45 |
1.5432 | 3.0 | 225 | 1.4808 | 0.65 |
1.2137 | 4.0 | 300 | 1.2621 | 0.7 |
1.1546 | 5.0 | 375 | 1.0581 | 0.77 |
0.9996 | 6.0 | 450 | 0.9858 | 0.75 |
0.7508 | 7.0 | 525 | 0.9087 | 0.78 |
0.6669 | 8.0 | 600 | 0.7710 | 0.81 |
0.6834 | 9.0 | 675 | 0.7663 | 0.8 |
0.4495 | 10.0 | 750 | 0.7184 | 0.79 |
0.3677 | 11.0 | 825 | 0.6589 | 0.81 |
0.3092 | 12.0 | 900 | 0.7223 | 0.8 |
0.1846 | 13.0 | 975 | 0.6665 | 0.82 |
0.1797 | 14.0 | 1050 | 0.6500 | 0.8 |
0.1695 | 15.0 | 1125 | 0.6549 | 0.81 |
0.1104 | 16.0 | 1200 | 0.6636 | 0.81 |
0.1192 | 17.0 | 1275 | 0.6722 | 0.81 |
0.1226 | 18.0 | 1350 | 0.6540 | 0.82 |
0.1218 | 19.0 | 1425 | 0.6646 | 0.79 |
0.067 | 20.0 | 1500 | 0.6676 | 0.81 |
Framework versions
- Transformers 4.33.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3