Model description
- Model type: A 7B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets.
- Language(s) (NLP): Primarily English
- License: MIT
- Finetuned from model: mistralai/Mistral-7B-v0.1
Intended uses & limitations
Here's how you can run the model using the pipeline()
function from 🤗 Transformers:
# Install transformers from source - only needed for versions <= v4.34
# pip install git+https://github.com/huggingface/transformers.git
# pip install accelerate
import torch
from transformers import pipeline
pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-beta", torch_dtype=torch.bfloat16, device_map="auto")
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
{
"role": "system",
"content": "You are a friendly chatbot who always responds in the style of a pirate",
},
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
# <|system|>
# You are a friendly chatbot who always responds in the style of a pirate.</s>
# <|user|>
# How many helicopters can a human eat in one sitting?</s>
# <|assistant|>
# Ah, me hearty matey! But yer question be a puzzler! A human cannot eat a helicopter in one sitting, as helicopters are not edible. They be made of metal, plastic, and other materials, not food!
Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.14.0
Citation
If you find Zephyr-7B-β is useful in your work, please cite it with:
@misc{tunstall2023zephyr,
title={Zephyr: Direct Distillation of LM Alignment},
author={Lewis Tunstall and Edward Beeching and Nathan Lambert and Nazneen Rajani and Kashif Rasul and Younes Belkada and Shengyi Huang and Leandro von Werra and Clémentine Fourrier and Nathan Habib and Nathan Sarrazin and Omar Sanseviero and Alexander M. Rush and Thomas Wolf},
year={2023},
eprint={2310.16944},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
If you use the UltraChat or UltraFeedback datasets, please cite the original works:
@misc{ding2023enhancing,
title={Enhancing Chat Language Models by Scaling High-quality Instructional Conversations},
author={Ning Ding and Yulin Chen and Bokai Xu and Yujia Qin and Zhi Zheng and Shengding Hu and Zhiyuan Liu and Maosong Sun and Bowen Zhou},
year={2023},
eprint={2305.14233},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{cui2023ultrafeedback,
title={UltraFeedback: Boosting Language Models with High-quality Feedback},
author={Ganqu Cui and Lifan Yuan and Ning Ding and Guanming Yao and Wei Zhu and Yuan Ni and Guotong Xie and Zhiyuan Liu and Maosong Sun},
year={2023},
eprint={2310.01377},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 32
Model tree for bushai/sar-i-7b
Base model
mistralai/Mistral-7B-v0.1Datasets used to train bushai/sar-i-7b
Space using bushai/sar-i-7b 1
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard62.031
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard84.356
- f1 score on Drop (3-Shot)validation set Open LLM Leaderboard9.662
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard57.449
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard12.737
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard61.070
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard77.743
- win rate on AlpacaEvalsource0.906
- score on MT-Benchsource7.340