musicaudio-outputs / README.md
bsb411's picture
bsb411/singer_good_bad_audio_classification
6ca5352 verified
|
raw
history blame
2.07 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - accuracy
model-index:
  - name: musicaudio-outputs
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.25

musicaudio-outputs

This model is a fine-tuned version of facebook/wav2vec2-base on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8706
  • Accuracy: 0.25

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 2 0.8776 0.125
0.4966 2.0 4 0.8590 0.125
0.4966 3.0 6 0.8707 0.0
0.4718 4.0 8 0.8794 0.125
0.4718 5.0 10 0.8705 0.25
0.4606 6.0 12 0.8706 0.25

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1