Edit model card

Model architecture Model size Language

Fine-tuned whisper-medium model for ASR in German

This model is a fine-tuned version of openai/whisper-medium, trained on the mozilla-foundation/common_voice_11_0 de dataset. When using the model make sure that your speech input is also sampled at 16Khz. This model also predicts casing and punctuation.

Performance

Below are the WERs of the pre-trained models on the Common Voice 9.0. These results are reported in the original paper.

Below are the WERs of the fine-tuned models on the Common Voice 11.0.

Usage

Inference with 🤗 Pipeline

import torch

from datasets import load_dataset
from transformers import pipeline

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Load pipeline
pipe = pipeline("automatic-speech-recognition", model="bofenghuang/whisper-medium-cv11-german", device=device)

# NB: set forced_decoder_ids for generation utils
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language="de", task="transcribe")

# Load data
ds_mcv_test = load_dataset("mozilla-foundation/common_voice_11_0", "de", split="test", streaming=True)
test_segment = next(iter(ds_mcv_test))
waveform = test_segment["audio"]

# NB: decoding option
# limit the maximum number of generated tokens to 225
pipe.model.config.max_length = 225 + 1
# sampling
# pipe.model.config.do_sample = True
# beam search
# pipe.model.config.num_beams = 5
# return
# pipe.model.config.return_dict_in_generate = True
# pipe.model.config.output_scores = True
# pipe.model.config.num_return_sequences = 5

# Run
generated_sentences = pipe(waveform)["text"]

Inference with 🤗 low-level APIs

import torch
import torchaudio

from datasets import load_dataset
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Load model
model = AutoModelForSpeechSeq2Seq.from_pretrained("bofenghuang/whisper-medium-cv11-german").to(device)
processor = AutoProcessor.from_pretrained("bofenghuang/whisper-medium-cv11-german", language="german", task="transcribe")

# NB: set forced_decoder_ids for generation utils
model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="de", task="transcribe")

# 16_000
model_sample_rate = processor.feature_extractor.sampling_rate

# Load data
ds_mcv_test = load_dataset("mozilla-foundation/common_voice_11_0", "de", split="test", streaming=True)
test_segment = next(iter(ds_mcv_test))
waveform = torch.from_numpy(test_segment["audio"]["array"])
sample_rate = test_segment["audio"]["sampling_rate"]

# Resample
if sample_rate != model_sample_rate:
    resampler = torchaudio.transforms.Resample(sample_rate, model_sample_rate)
    waveform = resampler(waveform)

# Get feat
inputs = processor(waveform, sampling_rate=model_sample_rate, return_tensors="pt")
input_features = inputs.input_features
input_features = input_features.to(device)

# Generate
generated_ids = model.generate(inputs=input_features, max_new_tokens=225)  # greedy
# generated_ids = model.generate(inputs=input_features, max_new_tokens=225, num_beams=5)  # beam search

# Detokenize
generated_sentences = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]

# Normalise predicted sentences if necessary
Downloads last month
14
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train bofenghuang/whisper-medium-cv11-german

Space using bofenghuang/whisper-medium-cv11-german 1

Evaluation results