Model Card for Model ID
Gemma 2B function calling. google/gemma-2b-it finetuned on hypervariance/function-calling-sharegpt.
Usage
Make sure you have the peft package installed. You can install it with pip install peft
.
from transformers import AutoModelForCausalLM , AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bodhicitta/gemma-2b-function-call", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("bodhicitta/gemma-2b-function-call", trust_remote_code=True, device_map="auto")
inputs = tokenizer(prompt,return_tensors="pt").to(model.device)
outputs = model.generate(**inputs,do_sample=True,temperature=0.1,top_p=0.95,max_new_tokens=100)
print(tokenizer.decode(outputs[0]))
You can also use sharegpt formatted prompts:
from transformers import AutoModelForCausalLM , AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bodhicitta/gemma-2b-function-call", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("bodhicitta/gemma-2b-function-call", trust_remote_code=True, device_map="auto")
chat = [
{
"from": "system",
"value": "SYSTEM PROMPT",
},
{
"from": "human",
"value": "USER QUESTION"
},
]
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs,do_sample=True,temperature=0.1,top_p=0.95,max_new_tokens=100)
print(tokenizer.decode(outputs[0]))
Prompt template
You are a helpful assistant with access to the following functions. Use them if required -
{
"name": "function name",
"description": "function description",
"parameters": {
"type": "type (object/number/string)",
"properties": {
"property_1": {
"type": "type",
"description": "property description"
}
},
"required": [
"property_1"
]
}
}
To use these functions respond with:
<functioncall> {"name": "function_name", "arguments": {"arg_1": "value_1", "arg_1": "value_1", ...}} </functioncall>
Edge cases you must handle:
- If there are no functions that match the user request, you will respond politely that you cannot help.
User Question:
USER_QUESTION
Function calls are enclosed in <functioncall>
</functioncall>
.
The model was trained using the same delimiters as google/gemma-2b-it:
<bos><start_of_turn>user
Write a hello world program<end_of_turn>
<start_of_turn>model
Use <end_of_turn>
stop sequence to prevent the model from generating further text.