my_birdcall_model / README.md
bmwrks's picture
End of training
e60d90b verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - accuracy
model-index:
  - name: my_birdcall_model
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: audiofolder
          type: audiofolder
          config: rb
          split: train
          args: rb
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.09525756336876533

my_birdcall_model

This model is a fine-tuned version of facebook/wav2vec2-base on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 4.1044
  • Accuracy: 0.0953

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
4.925 1.0 153 4.9054 0.0194
4.6287 2.0 306 4.5973 0.0356
4.4783 3.0 459 4.4897 0.0478
4.3947 4.0 612 4.4000 0.0576
4.3246 5.0 765 4.3330 0.0681
4.2475 6.0 918 4.2791 0.0769
4.1713 7.0 1071 4.2455 0.0809
4.1255 8.0 1224 4.2108 0.0765
4.0992 9.0 1377 4.1849 0.0820
4.0128 10.0 1530 4.1478 0.0914
3.9299 11.0 1683 4.1618 0.0865
3.9218 12.0 1836 4.1216 0.0916
3.8447 13.0 1989 4.1305 0.0942
3.8873 14.0 2142 4.1120 0.0942
3.8107 15.0 2295 4.1044 0.0953

Framework versions

  • Transformers 4.38.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0