SambaLingo-Hungarian-Chat
SambaLingo-Hungarian-Chat is a human aligned chat model trained in Hungarian and English. It is trained using direct preference optimization on top the base model SambaLingo-Hungarian-Base. The base model adapts Llama-2-7b to Hungarian by training on 59 billion tokens from the Hungarian split of the Cultura-X dataset. Try This Model at SambaLingo-chat-space.
Model Description
- Developed by: SambaNova Systems
- Model type: Language Model
- Language(s): Hungarian, English
- Finetuned from model: Llama-2-7b
- Try This Model: SambaLingo-chat-space
- Blog Post: sambalingo-open-source-language-experts
Getting Started
Loading Model With Hugging Face
Please make sure to set use_fast=False when loading the tokenizer.
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("sambanovasystems/SambaLingo-Hungarian-Chat", use_fast=False)
model = AutoModelForCausalLM.from_pretrained("sambanovasystems/SambaLingo-Hungarian-Chat", device_map="auto", torch_dtype="auto")
Interacting With Model Pipeline
Please make sure to set use_fast=False when loading the tokenizer.
from transformers import pipeline
pipe = pipeline("text-generation", model="sambanovasystems/SambaLingo-Hungarian-Chat", device_map="auto", use_fast=False)
messages = [
{"role": "user", "content": {YOUR_QUESTION}},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt)[0]
outputs = outputs["generated_text"]
Suggested Inference Parameters
- Temperature: 0.8
- Repetition penalty: 1.0
- Top-p: 0.9
Prompting Guidelines
To prompt this model, please use the following chat template:
<|user|>\n{question}</s>\n<|assistant|>\n
Example Prompts and Generations
<|user|>
Mi a jelentőssége a magyar szürkemarhának?</s>
<|assistant|>
A magyar szürkemarha jelentős kulturális és gazdasági jelentőséggel bír Magyarország számára. Íme néhány ok, amiért:
1. Kulturális örökség: A magyar szürkemarha a magyar kultúra és örökség szimbóluma. A fajta évszázadok óta létezik, és a magyar puszta ikonikus szimbólumává vált.
2. Élelmiszer: A magyar szürkemarha húsa és teje kiváló minőségű, és keresett a magyar és a nemzetközi piacokon. A hús sovány, zsírszegény, és magas a fehérje- és vastartalma.
3. Turizmus: A magyar szürkemarha fontos turisztikai attrakció Magyarországon. A látogatók szívesen látogatják a szürkemarha farmokat, és megismerkednek a fajta történetével és tenyésztésével.
4. Génmegőrzés: A magyar szürkemarha fontos génmegőrző faj, amely segít megőrizni a hagyományos gazdálkodási gyakorlatokat és a helyi ökoszisztémákat.
5. Gazdasági hatás: A magyar szürkemarha fontos gazdasági tevékenység Magyarország számára. A fajta tenyésztése és feldolgozása munkahelyeket teremt, és bevételt generál a gazdálkodók és a feldolgozók számára.
Összességében a magyar szürkemarha jelentős kulturális, gazdasági és ökológiai jelentőséggel bír Magyarország számára. A fajta megőrzése és népszerűsítése fontos a magyar kultúra és örökség, valamint a helyi gazdaság és ökoszisztémák szempontjából.
Training Details
The alignment phase follows the recipe for Zephyr-7B, and comprises two stages: supervised fine-tuning (SFT) and Direct Performance Optimization (DPO).
The SFT phase was done on the ultrachat_200k dataset mixed with the Google translated version of the ultrachat_200k dataset. It was trained for one epoch with global batch size 512 and max sequence length 2048 tokens. We used a linear decay learning rate of 2e-5 and 10% warmup.
The DPO phase was done on the ultrafeedback dataset and cai-conversation-harmless dataset, mixed with 10% of the data Google translated. It was trained with global batch size 32 and for three epochs. We used a linear decay learning rate of 5e-7, 10% warmup and β=0.1 as the regularization factor for DPO.
Tokenizer Details
We extended the vocabulary of the base llama model from 32,000 tokens to 57,000 tokens by adding up to 25,000 non-overlapping tokens from the new language.
Uses
Direct Use
Use of this model is governed by the Meta’s Llama 2 Community License Agreement. Please review and accept the license before downloading the model weights.
Out-of-Scope Use
SambaLingo should NOT be used for:
- Mission-critical applications
- Applications that involve the safety of others
- Making highly important decisions
Bias, Risks, and Limitations
Like all LLMs, SambaLingo has certain limitations:
- Hallucination: Model may sometimes generate responses that contain plausible-sounding but factually incorrect or irrelevant information.
- Code Switching: The model might unintentionally switch between languages or dialects within a single response, affecting the coherence and understandability of the output.
- Repetition: The Model may produce repetitive phrases or sentences, leading to less engaging and informative responses.
- Coding and Math: The model's performance in generating accurate code or solving complex mathematical problems may be limited.
- Toxicity: The model could inadvertently generate responses containing inappropriate or harmful content.
Acknowledgments
We extend our heartfelt gratitude to the open-source AI community; this endeavor would not have been possible without open source. SambaNova embraces the open-source community and aspires to actively contribute to this initiative.
We would like to give a special thanks to the following groups:
- Meta for open sourcing LLama 2 and open sourcing FLORES-200 dataset
- Nguyen et al for open sourcing CulturaX dataset
- CohereAI for releasing AYA-101 and open sourcing a multilingual instruction tuning dataset
- EleutherAI for their open source evaluation framework
- Hugging Face-H4 team for open source the zephyr training recipe and alignment handbook repo
Cite SambaLingo
@software{sambalingo,
title = {{SambaLingo: Open Source Language Experts}},
author = {SambaNova Systems},
url = {https://huggingface.co/sambanovasystems/SambaLingo-Hungarian-Chat}
month = {2},
year = {2024},
version = {1.0},
}
- Downloads last month
- 7