Edit model card

wav2vec2-base_lr_3e-4

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0682
  • Accuracy: 0.9784

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.7893 0.9851 33 1.5529 0.4602
0.9637 2.0 67 0.8562 0.7563
0.5758 2.9851 100 0.4980 0.8276
0.5401 4.0 134 0.3442 0.8875
0.3908 4.9851 167 0.4630 0.8322
0.348 6.0 201 0.2102 0.9260
0.309 6.9851 234 0.1996 0.9391
0.305 8.0 268 0.3001 0.9185
0.2311 8.9851 301 0.2150 0.9335
0.2362 10.0 335 0.1218 0.9550
0.1929 10.9851 368 0.1334 0.9550
0.1781 12.0 402 0.1077 0.9597
0.15 12.9851 435 0.0749 0.9719
0.1437 14.0 469 0.0710 0.9756
0.1135 14.7761 495 0.0682 0.9784

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
6
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for bisoye/wav2vec2-base_lr_3e-4

Finetuned
(652)
this model