bglick13 commited on
Commit
5b50f41
1 Parent(s): f679e2c

Create new file

Browse files
Files changed (1) hide show
  1. pipeline.py +88 -0
pipeline.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from diffusers import DiffusionPipeline
3
+ import tqdm
4
+
5
+ from diffusers.models.unet_1d import UNet1DModel
6
+ from diffusers.utils.dummy_pt_objects import DDPMScheduler
7
+
8
+
9
+ class ValueGuidedDiffuserPipeline(DiffusionPipeline):
10
+ def __init__(self, value_function: UNet1DModel, unet: UNet1DModel, scheduler: DDPMScheduler, env, *args, **kwargs):
11
+ super().__init__(*args, **kwargs)
12
+ self.value_function = value_function
13
+ self.unet = unet
14
+ self.scheduler = scheduler
15
+ self.env = env
16
+ self.data = env.get_dataset()
17
+ self.means = dict((key, val.mean(axis=0)) for key, val in self.data.items())
18
+ self.stds = dict((key, val.std(axis=0)) for key, val in self.data.items())
19
+ self.device = self.unet.device
20
+ self.state_dim = env.observation_space.shape[0]
21
+ self.action_dim = env.action_space.shape[0]
22
+
23
+ def normalize(self, x_in, key):
24
+ return (x_in - self.means[key]) / self.stds[key]
25
+
26
+ def de_normalize(self, x_in, key):
27
+ return x_in * self.stds[key] + self.means[key]
28
+
29
+ def to_torch(self, x_in):
30
+
31
+ if type(x_in) is dict:
32
+ return {k: self.to_torch(v) for k, v in x_in.items()}
33
+ elif torch.is_tensor(x_in):
34
+ return x_in.to(self.device)
35
+ return torch.tensor(x_in, device=self.device)
36
+
37
+ def reset_x0(self, x_in, cond, act_dim):
38
+ for key, val in cond.items():
39
+ x_in[:, key, act_dim:] = val.clone()
40
+ return x_in
41
+
42
+ def run_diffusion(self, x, conditions, n_guide_steps, scale):
43
+ batch_size = x.shape[0]
44
+ y = None
45
+ for i in tqdm.tqdm(self.scheduler.timesteps):
46
+ # create batch of timesteps to pass into model
47
+ timesteps = torch.full((batch_size,), i, device=self.device, dtype=torch.long)
48
+ # 3. call the sample function
49
+ for _ in range(n_guide_steps):
50
+ with torch.enable_grad():
51
+ x.requires_grad_()
52
+ y = self.value_function(x, timesteps).sample
53
+ grad = torch.autograd.grad([y.sum()], [x])[0]
54
+
55
+ posterior_variance = self.scheduler._get_variance(i)
56
+ model_std = torch.exp(0.5 * posterior_variance)
57
+ grad = model_std * grad
58
+ grad[timesteps < 2] = 0
59
+ x = x.detach()
60
+ x = x + scale * grad
61
+ x = self.reset_x0(x, conditions, self.action_dim)
62
+ # with torch.no_grad():
63
+ prev_x = self.unet(x.permute(0, 2, 1), timesteps).sample.permute(0, 2, 1)
64
+ x = self.scheduler.step(prev_x, i, x, predict_epsilon=False)["prev_sample"]
65
+
66
+ # 4. apply conditions to the trajectory
67
+ x = self.reset_x0(x, conditions, self.action_dim)
68
+ x = self.to_torch(x, device=self.device)
69
+ # y = network(x, timesteps).sample
70
+ return x, y
71
+
72
+ def __call__(self, obs, batch_size=64, planning_horizon=20, n_guide_steps=2, scale=0.1):
73
+ obs = self.normalize(obs, "observations")
74
+ obs = obs[None].repeat(batch_size, axis=0)
75
+ conditions = {0: self.to_torch(obs)}
76
+ shape = (batch_size, planning_horizon, self.state_dim + self.action_dim)
77
+ x1 = torch.randn(shape, device=self.device)
78
+ x = self.reset_x0(x1, conditions, self.action_dim)
79
+ x = self.to_torch(x)
80
+ x, y = self.run_diffusion(x, conditions, n_guide_steps, scale)
81
+ sorted_idx = y.argsort(0, descending=True).squeeze()
82
+ sorted_values = x[sorted_idx]
83
+ actions = sorted_values[:, :, : self.action_dim]
84
+ actions = actions.detach().cpu().numpy()
85
+ denorm_actions = self.de_normalize(actions, key="actions")
86
+ # denorm_actions = denorm_actions[np.random.randint(config['n_samples']), 0]
87
+ denorm_actions = denorm_actions[0, 0]
88
+ return denorm_actions