bglick13 commited on
Commit
f679e2c
1 Parent(s): b3bc4ab

delete pipeline.py

Browse files
Files changed (1) hide show
  1. pipeline.py +0 -88
pipeline.py DELETED
@@ -1,88 +0,0 @@
1
- import torch
2
- from diffusers import DiffusionPipeline
3
- import tqdm
4
-
5
- from diffusers.models.unet_1d import UNet1DModel
6
- from diffusers.utils.dummy_pt_objects import DDPMScheduler
7
-
8
-
9
- class ValueGuidedDiffuserPipeline(DiffusionPipeline):
10
- def __init__(self, value_function: UNet1DModel, unet: UNet1DModel, scheduler: DDPMScheduler, env, *args, **kwargs):
11
- super().__init__(*args, **kwargs)
12
- self.value_function = value_function
13
- self.unet = unet
14
- self.scheduler = scheduler
15
- self.env = env
16
- self.data = env.get_dataset()
17
- self.means = dict((key, val.mean(axis=0)) for key, val in self.data.items())
18
- self.stds = dict((key, val.std(axis=0)) for key, val in self.data.items())
19
- self.device = self.unet.device
20
- self.state_dim = env.observation_space.shape[0]
21
- self.action_dim = env.action_space.shape[0]
22
-
23
- def normalize(self, x_in, key):
24
- return (x_in - self.means[key]) / self.stds[key]
25
-
26
- def de_normalize(self, x_in, key):
27
- return x_in * self.stds[key] + self.means[key]
28
-
29
- def to_torch(self, x_in):
30
-
31
- if type(x_in) is dict:
32
- return {k: self.to_torch(v) for k, v in x_in.items()}
33
- elif torch.is_tensor(x_in):
34
- return x_in.to(self.device)
35
- return torch.tensor(x_in, device=self.device)
36
-
37
- def reset_x0(self, x_in, cond, act_dim):
38
- for key, val in cond.items():
39
- x_in[:, key, act_dim:] = val.clone()
40
- return x_in
41
-
42
- def run_diffusion(self, x, conditions, n_guide_steps, scale):
43
- batch_size = x.shape[0]
44
- y = None
45
- for i in tqdm.tqdm(self.scheduler.timesteps):
46
- # create batch of timesteps to pass into model
47
- timesteps = torch.full((batch_size,), i, device=self.device, dtype=torch.long)
48
- # 3. call the sample function
49
- for _ in range(n_guide_steps):
50
- with torch.enable_grad():
51
- x.requires_grad_()
52
- y = self.value_function(x, timesteps).sample
53
- grad = torch.autograd.grad([y.sum()], [x])[0]
54
-
55
- posterior_variance = self.scheduler._get_variance(i)
56
- model_std = torch.exp(0.5 * posterior_variance)
57
- grad = model_std * grad
58
- grad[timesteps < 2] = 0
59
- x = x.detach()
60
- x = x + scale * grad
61
- x = self.reset_x0(x, conditions, self.action_dim)
62
- # with torch.no_grad():
63
- prev_x = self.unet(x.permute(0, 2, 1), timesteps).sample.permute(0, 2, 1)
64
- x = self.scheduler.step(prev_x, i, x, predict_epsilon=False)["prev_sample"]
65
-
66
- # 4. apply conditions to the trajectory
67
- x = self.reset_x0(x, conditions, self.action_dim)
68
- x = self.to_torch(x, device=self.device)
69
- # y = network(x, timesteps).sample
70
- return x, y
71
-
72
- def __call__(self, obs, batch_size=64, planning_horizon=20, n_guide_steps=2, scale=0.1):
73
- obs = self.normalize(obs, "observations")
74
- obs = obs[None].repeat(batch_size, axis=0)
75
- conditions = {0: self.to_torch(obs)}
76
- shape = (batch_size, planning_horizon, self.state_dim + self.action_dim)
77
- x1 = torch.randn(shape, device=self.device)
78
- x = self.reset_x0(x1, conditions, self.action_dim)
79
- x = self.to_torch(x)
80
- x, y = self.run_diffusion(x, conditions, n_guide_steps, scale)
81
- sorted_idx = y.argsort(0, descending=True).squeeze()
82
- sorted_values = x[sorted_idx]
83
- actions = sorted_values[:, :, : self.action_dim]
84
- actions = actions.detach().cpu().numpy()
85
- denorm_actions = self.de_normalize(actions, key="actions")
86
- # denorm_actions = denorm_actions[np.random.randint(config['n_samples']), 0]
87
- denorm_actions = denorm_actions[0, 0]
88
- return denorm_actions