Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# SEGA-large model
|
2 |
+
|
3 |
+
SEGA: SkEtch-based Generative Augmentation
|
4 |
+
SEGA is a general text augmentation model that can be used for data augmentation for various NLP tasks (including sentiment analysis, topic classification, NER, and QA). SEGA uses an encoder-decoder structure (based on the BART architecture) and is pre-trained on the C4-realnewslike corpus.
|
5 |
+
|
6 |
+
- Paper: [this paper](to_be_added)
|
7 |
+
- Github: [this repository](to_be_added).
|
8 |
+
|
9 |
+
|
10 |
+
## Model description
|
11 |
+
|
12 |
+
|
13 |
+
## Model variations
|
14 |
+
|
15 |
+
|
16 |
+
| Model | #params | Language |
|
17 |
+
|------------------------|--------------------------------|-------|
|
18 |
+
| [`sega-large`](https://huggingface.co/bert-base-uncased) | xM | English |
|
19 |
+
| [`sega-base`](https://huggingface.co/bert-large-uncased) | xM | English |
|
20 |
+
| [`sega-small`](https://huggingface.co/bert-base-cased) | xM | English |
|
21 |
+
| [`sega-large-chinese`](https://huggingface.co/bert-large-cased) | xM | Chinese |
|
22 |
+
| [`sega-base-chinese`](https://huggingface.co/bert-base-chinese) | xM | Chinese |
|
23 |
+
| [`sega-small-chinese`](https://huggingface.co/bert-base-multilingual-cased) | xM | Chinese |
|
24 |
+
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
### How to use
|
31 |
+
|
32 |
+
|
33 |
+
### Limitations and bias
|
34 |
+
|
35 |
+
|
36 |
+
## Training data
|
37 |
+
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Preprocessing
|
42 |
+
|
43 |
+
|
44 |
+
### Pretraining
|
45 |
+
|
46 |
+
## Evaluation results
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
### BibTeX entry and citation info
|
51 |
+
|