genius-large / README.md
beyond's picture
Update README.md
39a830d
|
raw
history blame
5.06 kB
metadata
language: en
tags:
  - SEGA
  - data augmentation
  - keywords-to-text generation
  - sketch-to-text generation
license: apache-2.0
datasets:
  - C4
widget:
  - text: >-
      <mask> Conference on Empirical Methods <mask> submission of research
      papers <mask> Deep Learning <mask>
    example_title: Example 1
  - text: >-
      <mask> machine learning <mask> my research interest <mask> data science
      <mask>
    example_title: Example 2
  - text: >-
      <mask> play basketball <mask> a strong team <mask> Shanghai University of
      Finance and Economics <mask> last Sunday <mask>
    example_title: Example 3
  - text: >-
      Good news: <mask> the European Union <mask> month by EU <mask> Farm
      Commissioner Franz <mask>
    example_title: Example with a prompt 1
  - text: >-
      Bad news: <mask> the European Union <mask> month by EU <mask> Farm
      Commissioner Franz <mask>
    example_title: Example with a prompt 2
inference:
  parameters:
    max_length: 200
    num_beams: 3
    do_sample: true

SEGA-large model

SEGA: SkEtch-based Generative Augmentation

SEGA is a general text augmentation model that can be used for data augmentation for various NLP tasks (including sentiment analysis, topic classification, NER, and QA). SEGA uses an encoder-decoder structure (based on the BART architecture) and is pre-trained on the C4-realnewslike corpus.

How to use

from transformers import pipeline
# 1. load the model with the huggingface `pipeline`
sega = pipeline("text2text-generation", model='beyond/sega-large', device=0)
# 2. provide a sketch (joint by <mask> tokens)
sketch = "<mask> Conference on Empirical Methods <mask> submission of research papers <mask> Deep Learning <mask>"
# 3. just do it!
generated_text = sega(sketch, num_beams=3, do_sample=True, max_length=200)[0]['generated_text']
print(generated_text)

Output:

'The Conference on Empirical Methods welcomes the submission of research papers. Abstracts should be in the form of a paper or presentation. Please submit abstracts to the following email address: eemml.stanford.edu. The conference will be held at Stanford University on April 1618, 2019. The theme of the conference is Deep Learning.'

Model variations

Model #params Language
sega-large xM English
sega-base xM English
sega-small xM English
sega-large-chinese xM Chinese
sega-base-chinese xM Chinese
sega-small-chinese xM Chinese

Data Augmentation for Text Classification Tasks:

  • Setting: Low-resource setting, where only n={50,100,200,500,1000} labeled samples are available for training. The below results are the average of all training sizes.
  • Datasets: HuffPost, BBC, SST2, IMDB, Yahoo, 20NG.
  • Base classifier: DistilBERT
Method HuffPost BBC SST2 IMDB Yahoo 20NG avg.
ID / OOD (BBC) ID / OOD (Huff) ID / OOD (IMDB) ID / OOD (SST2)
none 79.17 / 62.32 96.16 / 62.00 76.67 / 73.16 77.87 / 74.43 45.77 46.67 69.42
EDA 79.63 / 67.48 95.11 / 58.92 75.52 / 69.46 77.88 / 75.88 45.10 46.15 69.11
STA 80.74 / 69.31 95.64 / 64.82 77.80 / 73.66 77.88 / 74.77 46.96 47.27 70.88
Back 80.48 / 67.75 95.28 / 63.10 76.96 / 72.23 78.35 / 75.96 46.10 46.61 70.28
MLM 80.04 / 66.80 96.07 / 65.39 76.61/ 73.11 75.73 / 73.70 45.35 46.53 69.93
C-MLM 79.96 / 65.10 96.13 / 67.80 76.91 / 71.83 77.31 / 75.02 45.29 46.36 70.17
LAMBADA 81.03 / 68.89 93.75 / 52.79 77.87 / 74.54 77.49 / 74.33 50.66 47.72 69.91
SEGA (Ours) 81.43 / 74.87 95.61 / 67.79 77.87 / 72.94 79.51 / 76.75 49.43 50.47 72.67
SEGA-f (Ours) 81.82 / 76.18 95.78 / 67.79 80.59 / 80.32 79.37 / 76.61 50.12 50.81 73.94

BibTeX entry and citation info