metadata
language: en
tags:
- SEGA
- data augmentation
- keywords-to-text generation
- sketch-to-text generation
license: apache-2.0
datasets:
- C4
widget:
- text: >-
<mask> Conference on Empirical Methods <mask> submission of research
papers <mask> Deep Learning <mask>
example_title: Example 1
- text: >-
<mask> machine learning <mask> my research interest <mask> data science
<mask>
example_title: Example 2
- text: >-
<mask> play basketball <mask> a strong team <mask> Shanghai University of
Finance and Economics <mask> last Sunday <mask>
example_title: Example 3
- text: >-
Good news: <mask> the European Union <mask> month by EU <mask> Farm
Commissioner Franz <mask>
example_title: Example with a prompt 1
- text: >-
Bad news: <mask> the European Union <mask> month by EU <mask> Farm
Commissioner Franz <mask>
example_title: Example with a prompt 2
inference:
parameters:
max_length: 200
num_beams: 3
do_sample: true
SEGA-large model
SEGA: SkEtch-based Generative Augmentation
SEGA is a general text augmentation model that can be used for data augmentation for various NLP tasks (including sentiment analysis, topic classification, NER, and QA). SEGA uses an encoder-decoder structure (based on the BART architecture) and is pre-trained on the C4-realnewslike
corpus.
- Paper: this paper
- Github: this repository.
How to use
from transformers import pipeline
# 1. load the model with the huggingface `pipeline`
sega = pipeline("text2text-generation", model='beyond/sega-large', device=0)
# 2. provide a sketch (joint by <mask> tokens)
sketch = "<mask> Conference on Empirical Methods <mask> submission of research papers <mask> Deep Learning <mask>"
# 3. just do it!
generated_text = sega(sketch, num_beams=3, do_sample=True, max_length=200)[0]['generated_text']
print(generated_text)
Output:
'The Conference on Empirical Methods welcomes the submission of research papers. Abstracts should be in the form of a paper or presentation. Please submit abstracts to the following email address: eemml.stanford.edu. The conference will be held at Stanford University on April 1618, 2019. The theme of the conference is Deep Learning.'
Model variations
Model | #params | Language |
---|---|---|
sega-large |
xM | English |
sega-base |
xM | English |
sega-small |
xM | English |
sega-large-chinese |
xM | Chinese |
sega-base-chinese |
xM | Chinese |
sega-small-chinese |
xM | Chinese |
Data Augmentation for Text Classification Tasks:
- Setting: Low-resource setting, where only n={50,100,200,500,1000} labeled samples are available for training. The below results are the average of all training sizes.
- Datasets: HuffPost, BBC, SST2, IMDB, Yahoo, 20NG.
- Base classifier: DistilBERT
Method | HuffPost | BBC | SST2 | IMDB | Yahoo | 20NG | avg. |
---|---|---|---|---|---|---|---|
ID / OOD (BBC) | ID / OOD (Huff) | ID / OOD (IMDB) | ID / OOD (SST2) | ||||
none | 79.17 / 62.32 | 96.16 / 62.00 | 76.67 / 73.16 | 77.87 / 74.43 | 45.77 | 46.67 | 69.42 |
EDA | 79.63 / 67.48 | 95.11 / 58.92 | 75.52 / 69.46 | 77.88 / 75.88 | 45.10 | 46.15 | 69.11 |
STA | 80.74 / 69.31 | 95.64 / 64.82 | 77.80 / 73.66 | 77.88 / 74.77 | 46.96 | 47.27 | 70.88 |
Back | 80.48 / 67.75 | 95.28 / 63.10 | 76.96 / 72.23 | 78.35 / 75.96 | 46.10 | 46.61 | 70.28 |
MLM | 80.04 / 66.80 | 96.07 / 65.39 | 76.61/ 73.11 | 75.73 / 73.70 | 45.35 | 46.53 | 69.93 |
C-MLM | 79.96 / 65.10 | 96.13 / 67.80 | 76.91 / 71.83 | 77.31 / 75.02 | 45.29 | 46.36 | 70.17 |
LAMBADA | 81.03 / 68.89 | 93.75 / 52.79 | 77.87 / 74.54 | 77.49 / 74.33 | 50.66 | 47.72 | 69.91 |
SEGA (Ours) | 81.43 / 74.87 | 95.61 / 67.79 | 77.87 / 72.94 | 79.51 / 76.75 | 49.43 | 50.47 | 72.67 |
SEGA-f (Ours) | 81.82 / 76.18 | 95.78 / 67.79 | 80.59 / 80.32 | 79.37 / 76.61 | 50.12 | 50.81 | 73.94 |