See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: EleutherAI/pythia-14m
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- stsbenchmark-sts_train_data.json
ds_type: json
path: /workspace/input_data/stsbenchmark-sts_train_data.json
type:
field_input: sentence2
field_instruction: sentence1
field_output: genre
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 10
eval_table_size: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hours_to_complete: 2
hub_model_id: besimray/miner1_c6f8f369-86ff-49b4-9737-598659d9e56b_1731003791
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 1
mlflow_experiment_name: /tmp/stsbenchmark-sts_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
save_strategy: steps
sequence_len: 4096
started_at: '2024-11-07T18:23:11.087868'
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: besimray24-rayon
wandb_mode: online
wandb_project: Public_TuningSN
wandb_run: miner_id_24
wandb_runid: c6f8f369-86ff-49b4-9737-598659d9e56b
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
miner1_c6f8f369-86ff-49b4-9737-598659d9e56b_1731003791
This model is a fine-tuned version of EleutherAI/pythia-14m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3630
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 500
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
40.0055 | 0.0005 | 1 | 9.8570 |
30.1781 | 0.0049 | 10 | 6.9379 |
12.6173 | 0.0099 | 20 | 2.6532 |
0.7716 | 0.0148 | 30 | 1.0332 |
4.4465 | 0.0198 | 40 | 0.9309 |
1.9365 | 0.0247 | 50 | 0.6442 |
1.6955 | 0.0296 | 60 | 0.6789 |
2.1402 | 0.0346 | 70 | 0.4198 |
1.961 | 0.0395 | 80 | 0.3730 |
2.0024 | 0.0444 | 90 | 0.4597 |
0.1765 | 0.0494 | 100 | 0.7099 |
0.996 | 0.0543 | 110 | 0.3618 |
2.5274 | 0.0593 | 120 | 0.3091 |
0.6428 | 0.0642 | 130 | 0.2816 |
0.6649 | 0.0691 | 140 | 0.3415 |
0.2853 | 0.0741 | 150 | 0.3710 |
0.6265 | 0.0790 | 160 | 0.3630 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 34
Model tree for besimray/miner1_c6f8f369-86ff-49b4-9737-598659d9e56b_1731003791
Base model
EleutherAI/pythia-14m