|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
datasets: |
|
- xlsum |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-finetuned-summary |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: xlsum |
|
type: xlsum |
|
config: french |
|
split: validation |
|
args: french |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 21.6196 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-finetuned-summary |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the xlsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.1466 |
|
- Rouge1: 21.6196 |
|
- Rouge2: 7.7979 |
|
- Rougel: 17.5683 |
|
- Rougelsum: 17.6757 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:| |
|
| 3.9629 | 1.0 | 2170 | 2.3132 | 20.7316 | 7.3431 | 16.9157 | 17.0149 | |
|
| 2.9704 | 2.0 | 4340 | 2.2299 | 21.3148 | 7.8529 | 17.2968 | 17.3873 | |
|
| 2.8026 | 3.0 | 6510 | 2.2092 | 21.3313 | 7.8526 | 17.3679 | 17.4773 | |
|
| 2.7054 | 4.0 | 8680 | 2.1876 | 21.6909 | 7.9841 | 17.6881 | 17.7839 | |
|
| 2.6453 | 5.0 | 10850 | 2.1743 | 21.7372 | 7.7546 | 17.6551 | 17.7575 | |
|
| 2.5925 | 6.0 | 13020 | 2.1602 | 21.5715 | 7.7879 | 17.5943 | 17.6994 | |
|
| 2.5619 | 7.0 | 15190 | 2.1482 | 21.5888 | 7.8789 | 17.6519 | 17.752 | |
|
| 2.5415 | 8.0 | 17360 | 2.1466 | 21.6196 | 7.7979 | 17.5683 | 17.6757 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|