metadata
base_model: klue/roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: pogny-128-0.00002
results: []
pogny-128-0.00002
This model is a fine-tuned version of klue/roberta-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.6069
- Accuracy: 0.7691
- F1: 0.7661
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.0495 | 1.0 | 603 | 1.3655 | 0.7640 | 0.7622 |
0.0374 | 2.0 | 1206 | 1.4916 | 0.7674 | 0.7653 |
0.0222 | 3.0 | 1809 | 1.6069 | 0.7691 | 0.7661 |
Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0a0+b5021ba
- Datasets 2.6.2
- Tokenizers 0.14.1