voyager-axolotl / README.md
baptistecolle's picture
End of training
b56ab5c verified
metadata
license: apache-2.0
library_name: peft
tags:
  - axolotl
  - generated_from_trainer
base_model: Open-Orca/Mistral-7B-OpenOrca
model-index:
  - name: voyager-axolotl
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.3.0

base_model: Open-Orca/Mistral-7B-OpenOrca
model_type: MistralForCausalLM
tokenizer_type: AutoTokenizer
is_mistral_derived_model: true

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: baptistecolle/mc_training_data
    type: completion
  - path: baptistecolle/mc_training_data_conversations
    type: sharegpt

hub_model_id: baptistecolle/voyager-axolotl
  
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./qlora-out

adapter: qlora

# gpu_memory_limit: 10
# max_memory: {0: "20GIB"}


sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj
lora_modules_to_save: 
  - embed_tokens
  - lm_head

wandb_project: axolotl-voyager

gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"

voyager-axolotl

This model is a fine-tuned version of Open-Orca/Mistral-7B-OpenOrca on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7640

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

The following bitsandbytes quantization config was used during training:

  • quant_method: bitsandbytes
  • load_in_8bit: False
  • load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: True
  • bnb_4bit_compute_dtype: bfloat16

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
2.9292 0.0 1 2.9051
2.0261 0.25 94 1.9768
1.8991 0.5 188 1.8530
1.6994 0.75 282 1.7640

Framework versions

  • PEFT 0.7.0
  • Transformers 4.37.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0