|
--- |
|
base_model: SALT-NLP/FLANG-BERT |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: FLANG-BERT_flang-bert |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# FLANG-BERT_flang-bert |
|
|
|
This model is a fine-tuned version of [SALT-NLP/FLANG-BERT](https://huggingface.co/SALT-NLP/FLANG-BERT) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4908 |
|
- Accuracy: 0.8487 |
|
- F1: 0.8486 |
|
- Precision: 0.8489 |
|
- Recall: 0.8487 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 1000 |
|
- num_epochs: 25 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.8968 | 1.0 | 91 | 0.8147 | 0.6256 | 0.5775 | 0.6185 | 0.6256 | |
|
| 0.5694 | 2.0 | 182 | 0.4893 | 0.8097 | 0.8101 | 0.8124 | 0.8097 | |
|
| 0.3393 | 3.0 | 273 | 0.4303 | 0.8471 | 0.8472 | 0.8474 | 0.8471 | |
|
| 0.2442 | 4.0 | 364 | 0.5042 | 0.8487 | 0.8462 | 0.8512 | 0.8487 | |
|
| 0.1807 | 5.0 | 455 | 0.4908 | 0.8487 | 0.8486 | 0.8489 | 0.8487 | |
|
| 0.1061 | 6.0 | 546 | 0.5168 | 0.8409 | 0.8396 | 0.8405 | 0.8409 | |
|
| 0.1287 | 7.0 | 637 | 0.6537 | 0.8440 | 0.8438 | 0.8470 | 0.8440 | |
|
| 0.1079 | 8.0 | 728 | 0.6641 | 0.8315 | 0.8319 | 0.8345 | 0.8315 | |
|
| 0.0693 | 9.0 | 819 | 0.8833 | 0.8346 | 0.8344 | 0.8363 | 0.8346 | |
|
| 0.1084 | 10.0 | 910 | 0.8721 | 0.7941 | 0.7947 | 0.7972 | 0.7941 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.0 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.15.1 |
|
|