|
--- |
|
base_model: SALT-NLP/FLANG-BERT |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: FLANG-BERT_Synonym-wordnet |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# FLANG-BERT_Synonym-wordnet |
|
|
|
This model is a fine-tuned version of [SALT-NLP/FLANG-BERT](https://huggingface.co/SALT-NLP/FLANG-BERT) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2403 |
|
- Accuracy: 0.9189 |
|
- F1: 0.9190 |
|
- Precision: 0.9194 |
|
- Recall: 0.9189 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 1000 |
|
- num_epochs: 25 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.7933 | 1.0 | 91 | 0.7348 | 0.6880 | 0.6790 | 0.6972 | 0.6880 | |
|
| 0.392 | 2.0 | 182 | 0.3757 | 0.8456 | 0.8461 | 0.8488 | 0.8456 | |
|
| 0.2646 | 3.0 | 273 | 0.3044 | 0.8846 | 0.8839 | 0.8876 | 0.8846 | |
|
| 0.1867 | 4.0 | 364 | 0.3522 | 0.8846 | 0.8846 | 0.8910 | 0.8846 | |
|
| 0.1158 | 5.0 | 455 | 0.2403 | 0.9189 | 0.9190 | 0.9194 | 0.9189 | |
|
| 0.1375 | 6.0 | 546 | 0.3255 | 0.9111 | 0.9105 | 0.9108 | 0.9111 | |
|
| 0.1311 | 7.0 | 637 | 0.4090 | 0.8924 | 0.8930 | 0.9028 | 0.8924 | |
|
| 0.1054 | 8.0 | 728 | 0.4269 | 0.9017 | 0.9015 | 0.9023 | 0.9017 | |
|
| 0.0739 | 9.0 | 819 | 0.4098 | 0.9002 | 0.8992 | 0.9008 | 0.9002 | |
|
| 0.0389 | 10.0 | 910 | 0.4411 | 0.9033 | 0.9030 | 0.9072 | 0.9033 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.0 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.15.1 |
|
|