Edit model card

rgai_emotion_recognition

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the FastJobs/Visual_Emotional_Analysis dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3077
  • Accuracy: 0.5813

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0698 1.0 25 2.0921 0.1125
1.973 2.0 50 1.9930 0.1938
1.8091 3.0 75 1.8374 0.3937
1.5732 4.0 100 1.6804 0.475
1.4087 5.0 125 1.5660 0.5125
1.2653 6.0 150 1.4769 0.5375
1.1443 7.0 175 1.4084 0.55
0.9888 8.0 200 1.3633 0.5625
0.9029 9.0 225 1.3305 0.55
0.8372 10.0 250 1.3077 0.5813
0.7569 11.0 275 1.2983 0.5625
0.6886 12.0 300 1.2806 0.5687
0.6216 13.0 325 1.2718 0.5687
0.6385 14.0 350 1.2700 0.5563
0.6029 15.0 375 1.2693 0.5625

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for aswincandra/rgai_emotion_recognition

Finetuned
(1670)
this model

Dataset used to train aswincandra/rgai_emotion_recognition

Evaluation results