|
--- |
|
library_name: stable-baselines3 |
|
tags: |
|
- PandaReachDense-v2 |
|
- deep-reinforcement-learning |
|
- reinforcement-learning |
|
- stable-baselines3 |
|
model-index: |
|
- name: A2C |
|
results: |
|
- task: |
|
type: reinforcement-learning |
|
name: reinforcement-learning |
|
dataset: |
|
name: PandaReachDense-v2 |
|
type: PandaReachDense-v2 |
|
metrics: |
|
- type: mean_reward |
|
value: -0.74 +/- 0.27 |
|
name: mean_reward |
|
verified: false |
|
--- |
|
|
|
# **A2C** Agent playing **PandaReachDense-v2** |
|
This is a trained model of a **A2C** agent playing **PandaReachDense-v2** |
|
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). |
|
|
|
## Usage (with Stable-baselines3) |
|
TODO: Add your code |
|
|
|
|
|
```python |
|
#install |
|
!apt install python-opengl |
|
!apt install ffmpeg |
|
!apt install xvfb |
|
!pip3 install pyvirtualdisplay |
|
!pip install -r https://raw.githubusercontent.com/huggingface/deep-rl-class/main/notebooks/unit6/requirements-unit6.txt |
|
|
|
# Virtual display |
|
from pyvirtualdisplay import Display |
|
virtual_display = Display(visible=0, size=(1400, 900)) |
|
virtual_display.start() |
|
|
|
#imports |
|
import pybullet_envs |
|
import panda_gym |
|
import gym |
|
|
|
import os |
|
|
|
from huggingface_sb3 import load_from_hub, package_to_hub |
|
|
|
from stable_baselines3 import A2C |
|
from stable_baselines3.common.evaluation import evaluate_policy |
|
from stable_baselines3.common.vec_env import DummyVecEnv, VecNormalize |
|
from stable_baselines3.common.env_util import make_vec_env |
|
|
|
from huggingface_hub import notebook_login |
|
|
|
#Define the environment called "PandaReachDense-v2" |
|
env_id = "PandaReachDense-v2" |
|
|
|
#Make a vectorized environment |
|
env = make_vec_env(env_id, n_envs=4) |
|
|
|
#Add a wrapper to normalize the observations and rewards. Check the documentation |
|
env = VecNormalize(env, norm_obs=True, norm_reward=True, clip_obs=10) |
|
|
|
#Create the A2C Model (don't forget verbose=1 to print the training logs). |
|
model = A2C(policy = "MultiInputPolicy", |
|
env = env, |
|
gae_lambda = 0.9, |
|
gamma = 0.95, |
|
learning_rate = 0.001, |
|
max_grad_norm = 0.5, |
|
n_steps = 8, |
|
vf_coef = 0.4, |
|
ent_coef = 0.0, |
|
seed=11, |
|
policy_kwargs=dict( |
|
log_std_init=-2, ortho_init=False), |
|
normalize_advantage=False, |
|
use_rms_prop= True, |
|
use_sde= True, |
|
verbose=1) |
|
|
|
#Train it for 1M Timesteps |
|
model.learn(1_500_000) |
|
|
|
#Save the model and VecNormalize statistics when saving the agent |
|
model.save(f"a2c-{env_id}") |
|
env.save(f"vec_normalize_{env_id}.pkl") |
|
|
|
#Evaluate your agent |
|
eval_env = DummyVecEnv([lambda: gym.make(env_id)]) |
|
eval_env = VecNormalize.load(f"vec_normalize_{env_id}.pkl", eval_env) |
|
|
|
# do not update them at test time |
|
eval_env.training = False |
|
# reward normalization is not needed at test time |
|
eval_env.norm_reward = False |
|
|
|
# Load the model |
|
model = A2C.load(f"a2c-{env_id}") |
|
|
|
#Evaluate model |
|
mean_reward, std_reward = evaluate_policy(model, eval_env) |
|
print(f"Mean reward = {mean_reward:.2f} +/- {std_reward:.2f}") |
|
... |
|
``` |
|
|