|
--- |
|
license: cc-by-nc-sa-4.0 |
|
base_model: microsoft/layoutlmv3-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: ser-model-microsoft |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ser-model-microsoft |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2762 |
|
- Precision: 0.6 |
|
- Recall: 0.9 |
|
- F1: 0.7200 |
|
- Accuracy: 0.925 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 100 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 5.0 | 10 | 0.9255 | 0.0 | 0.0 | 0.0 | 0.7 | |
|
| No log | 10.0 | 20 | 0.6668 | 0.4444 | 0.4 | 0.4211 | 0.7875 | |
|
| No log | 15.0 | 30 | 0.4304 | 0.6667 | 0.8 | 0.7273 | 0.85 | |
|
| No log | 20.0 | 40 | 0.4050 | 0.6667 | 0.8 | 0.7273 | 0.85 | |
|
| No log | 25.0 | 50 | 0.5639 | 0.8 | 0.8 | 0.8000 | 0.8125 | |
|
| No log | 30.0 | 60 | 0.2429 | 0.8 | 0.8 | 0.8000 | 0.925 | |
|
| No log | 35.0 | 70 | 0.4434 | 0.6667 | 0.8 | 0.7273 | 0.8625 | |
|
| No log | 40.0 | 80 | 0.2817 | 0.6 | 0.9 | 0.7200 | 0.925 | |
|
| No log | 45.0 | 90 | 0.2784 | 0.6 | 0.9 | 0.7200 | 0.925 | |
|
| No log | 50.0 | 100 | 0.2762 | 0.6 | 0.9 | 0.7200 | 0.925 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.1 |
|
|