ser-model-microsoft / README.md
aruca's picture
End of training
6bc6af7 verified
---
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: ser-model-microsoft
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ser-model-microsoft
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2762
- Precision: 0.6
- Recall: 0.9
- F1: 0.7200
- Accuracy: 0.925
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 5.0 | 10 | 0.9255 | 0.0 | 0.0 | 0.0 | 0.7 |
| No log | 10.0 | 20 | 0.6668 | 0.4444 | 0.4 | 0.4211 | 0.7875 |
| No log | 15.0 | 30 | 0.4304 | 0.6667 | 0.8 | 0.7273 | 0.85 |
| No log | 20.0 | 40 | 0.4050 | 0.6667 | 0.8 | 0.7273 | 0.85 |
| No log | 25.0 | 50 | 0.5639 | 0.8 | 0.8 | 0.8000 | 0.8125 |
| No log | 30.0 | 60 | 0.2429 | 0.8 | 0.8 | 0.8000 | 0.925 |
| No log | 35.0 | 70 | 0.4434 | 0.6667 | 0.8 | 0.7273 | 0.8625 |
| No log | 40.0 | 80 | 0.2817 | 0.6 | 0.9 | 0.7200 | 0.925 |
| No log | 45.0 | 90 | 0.2784 | 0.6 | 0.9 | 0.7200 | 0.925 |
| No log | 50.0 | 100 | 0.2762 | 0.6 | 0.9 | 0.7200 | 0.925 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1