t5-small-billsum / README.md
antonkurylo's picture
Training complete
c6c3892 verified
|
raw
history blame
1.93 kB
---
library_name: transformers
license: apache-2.0
base_model: t5-small
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: t5-small-billsum
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-billsum
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9564
- Rouge1: 50.3551
- Rouge2: 29.3717
- Rougel: 39.4102
- Rougelsum: 43.6247
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 2.5468 | 1.0 | 1185 | 2.0937 | 48.625 | 27.492 | 37.671 | 41.4628 |
| 2.2867 | 2.0 | 2370 | 2.0155 | 49.2547 | 28.248 | 38.39 | 42.3374 |
| 2.2241 | 3.0 | 3555 | 1.9796 | 49.8802 | 28.8333 | 38.8829 | 43.027 |
| 2.1925 | 4.0 | 4740 | 1.9620 | 50.07 | 28.9961 | 39.1086 | 43.3251 |
| 2.1791 | 5.0 | 5925 | 1.9576 | 50.2626 | 29.1819 | 39.2415 | 43.4781 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.2
- Tokenizers 0.19.1