|
import torch |
|
|
|
from TTS.vocoder.layers.wavegrad import PositionalEncoding, FiLM, UBlock, DBlock |
|
from TTS.vocoder.models.wavegrad import Wavegrad |
|
|
|
|
|
def test_positional_encoding(): |
|
layer = PositionalEncoding(50) |
|
inp = torch.rand(32, 50, 100) |
|
nl = torch.rand(32) |
|
o = layer(inp, nl) |
|
|
|
assert o.shape[0] == 32 |
|
assert o.shape[1] == 50 |
|
assert o.shape[2] == 100 |
|
assert isinstance(o, torch.FloatTensor) |
|
|
|
|
|
def test_film(): |
|
layer = FiLM(50, 76) |
|
inp = torch.rand(32, 50, 100) |
|
nl = torch.rand(32) |
|
shift, scale = layer(inp, nl) |
|
|
|
assert shift.shape[0] == 32 |
|
assert shift.shape[1] == 76 |
|
assert shift.shape[2] == 100 |
|
assert isinstance(shift, torch.FloatTensor) |
|
|
|
assert scale.shape[0] == 32 |
|
assert scale.shape[1] == 76 |
|
assert scale.shape[2] == 100 |
|
assert isinstance(scale, torch.FloatTensor) |
|
|
|
layer.apply_weight_norm() |
|
layer.remove_weight_norm() |
|
|
|
|
|
def test_ublock(): |
|
inp1 = torch.rand(32, 50, 100) |
|
inp2 = torch.rand(32, 50, 50) |
|
nl = torch.rand(32) |
|
|
|
layer_film = FiLM(50, 100) |
|
layer = UBlock(50, 100, 2, [1, 2, 4, 8]) |
|
|
|
scale, shift = layer_film(inp1, nl) |
|
o = layer(inp2, shift, scale) |
|
|
|
assert o.shape[0] == 32 |
|
assert o.shape[1] == 100 |
|
assert o.shape[2] == 100 |
|
assert isinstance(o, torch.FloatTensor) |
|
|
|
layer.apply_weight_norm() |
|
layer.remove_weight_norm() |
|
|
|
|
|
def test_dblock(): |
|
inp = torch.rand(32, 50, 130) |
|
layer = DBlock(50, 100, 2) |
|
o = layer(inp) |
|
|
|
assert o.shape[0] == 32 |
|
assert o.shape[1] == 100 |
|
assert o.shape[2] == 65 |
|
assert isinstance(o, torch.FloatTensor) |
|
|
|
layer.apply_weight_norm() |
|
layer.remove_weight_norm() |
|
|
|
|
|
def test_wavegrad_forward(): |
|
x = torch.rand(32, 1, 20 * 300) |
|
c = torch.rand(32, 80, 20) |
|
noise_scale = torch.rand(32) |
|
|
|
model = Wavegrad(in_channels=80, |
|
out_channels=1, |
|
upsample_factors=[5, 5, 3, 2, 2], |
|
upsample_dilations=[[1, 2, 1, 2], [1, 2, 1, 2], |
|
[1, 2, 4, 8], [1, 2, 4, 8], |
|
[1, 2, 4, 8]]) |
|
o = model.forward(x, c, noise_scale) |
|
|
|
assert o.shape[0] == 32 |
|
assert o.shape[1] == 1 |
|
assert o.shape[2] == 20 * 300 |
|
assert isinstance(o, torch.FloatTensor) |
|
|
|
model.apply_weight_norm() |
|
model.remove_weight_norm() |
|
|