File size: 2,362 Bytes
2493d72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
import torch
from TTS.vocoder.layers.wavegrad import PositionalEncoding, FiLM, UBlock, DBlock
from TTS.vocoder.models.wavegrad import Wavegrad
def test_positional_encoding():
layer = PositionalEncoding(50)
inp = torch.rand(32, 50, 100)
nl = torch.rand(32)
o = layer(inp, nl)
assert o.shape[0] == 32
assert o.shape[1] == 50
assert o.shape[2] == 100
assert isinstance(o, torch.FloatTensor)
def test_film():
layer = FiLM(50, 76)
inp = torch.rand(32, 50, 100)
nl = torch.rand(32)
shift, scale = layer(inp, nl)
assert shift.shape[0] == 32
assert shift.shape[1] == 76
assert shift.shape[2] == 100
assert isinstance(shift, torch.FloatTensor)
assert scale.shape[0] == 32
assert scale.shape[1] == 76
assert scale.shape[2] == 100
assert isinstance(scale, torch.FloatTensor)
layer.apply_weight_norm()
layer.remove_weight_norm()
def test_ublock():
inp1 = torch.rand(32, 50, 100)
inp2 = torch.rand(32, 50, 50)
nl = torch.rand(32)
layer_film = FiLM(50, 100)
layer = UBlock(50, 100, 2, [1, 2, 4, 8])
scale, shift = layer_film(inp1, nl)
o = layer(inp2, shift, scale)
assert o.shape[0] == 32
assert o.shape[1] == 100
assert o.shape[2] == 100
assert isinstance(o, torch.FloatTensor)
layer.apply_weight_norm()
layer.remove_weight_norm()
def test_dblock():
inp = torch.rand(32, 50, 130)
layer = DBlock(50, 100, 2)
o = layer(inp)
assert o.shape[0] == 32
assert o.shape[1] == 100
assert o.shape[2] == 65
assert isinstance(o, torch.FloatTensor)
layer.apply_weight_norm()
layer.remove_weight_norm()
def test_wavegrad_forward():
x = torch.rand(32, 1, 20 * 300)
c = torch.rand(32, 80, 20)
noise_scale = torch.rand(32)
model = Wavegrad(in_channels=80,
out_channels=1,
upsample_factors=[5, 5, 3, 2, 2],
upsample_dilations=[[1, 2, 1, 2], [1, 2, 1, 2],
[1, 2, 4, 8], [1, 2, 4, 8],
[1, 2, 4, 8]])
o = model.forward(x, c, noise_scale)
assert o.shape[0] == 32
assert o.shape[1] == 1
assert o.shape[2] == 20 * 300
assert isinstance(o, torch.FloatTensor)
model.apply_weight_norm()
model.remove_weight_norm()
|