metadata
language:
- multilingual
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_12_0
metrics:
- wer
model-index:
- name: whisper-tiny-zh-TW_Lauren
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_12_0
config: zh-TW
split: None
args: 'config: zh-TW, split: test'
metrics:
- name: Wer
type: wer
value: 66.11952861952862
whisper-tiny-zh-TW_Lauren
This model is a fine-tuned version of openai/whisper-tiny on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.4621
- Wer: 66.1195
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.4972 | 1.4025 | 1000 | 0.4668 | 68.2660 |
0.2862 | 2.8050 | 2000 | 0.4528 | 66.2037 |
0.17 | 4.2076 | 3000 | 0.4583 | 65.9301 |
0.1137 | 5.6101 | 4000 | 0.4621 | 66.1195 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1