Edit model card

resnet-pretrained-brain-mri

This model is a fine-tuned version of microsoft/resnet-50 on the BrainMRI dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1450
  • Accuracy: 0.5228

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Accuracy Validation Loss
No log 1.0 72 0.4704 1.2440
1.2771 2.0 144 0.5575 1.1610
1.1543 3.0 216 0.6446 1.0949
1.1543 4.0 288 0.6812 1.0361
1.0664 5.0 360 0.6742 1.0100
0.9998 6.0 432 0.7003 0.9687
0.9537 7.0 504 0.6986 0.9484
0.9537 8.0 576 0.6934 0.9285
0.9239 9.0 648 0.7108 0.8992
0.893 10.0 720 0.7369 0.8723
0.893 11.0 792 0.7334 0.8635
0.8726 12.0 864 0.7474 0.8589
0.8482 13.0 936 0.7160 0.8423
0.8461 14.0 1008 0.7300 0.8481
0.8461 15.0 1080 0.7352 0.8312
0.8267 16.0 1152 0.7247 0.8319
0.8163 17.0 1224 0.7456 0.8136
0.8163 18.0 1296 0.7474 0.8151
0.8126 19.0 1368 0.7596 0.8071
0.8022 20.0 1440 0.7491 0.8210

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.3.0+cu121
  • Tokenizers 0.19.1
Downloads last month
8
Safetensors
Model size
23.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for andrei-teodor/resnet-pretrained-brain-mri

Finetuned
(123)
this model