amd
/

ONNX
PyTorch
English
RyzenAI
super resolution
SISR
Edit model card

Model description

SESR is based on linear overparameterization of CNNs and creates an efficient model architecture for SISR. It was introduced in the paper Collapsible Linear Blocks for Super-Efficient Super Resolution. The official code for this work is available at this https://github.com/ARM-software/sesr

We develop a modified version that could be supported by AMD Ryzen AI.

Intended uses & limitations

You can use the raw model for super resolution. See the model hub to look for all available models.

How to use

Installation

Follow Ryzen AI Installation to prepare the environment for Ryzen AI. Run the following script to install pre-requisites for this model.

pip install -r requirements.txt 

Data Preparation (optional: for accuracy evaluation)

  1. Download the benchmark(https://cv.snu.ac.kr/research/EDSR/benchmark.tar) dataset.
  2. Organize the dataset directory as follows:
└── dataset
     └── benchmark
          β”œβ”€β”€ Set5
               β”œβ”€β”€ HR
               |   β”œβ”€β”€ baby.png
               |   β”œβ”€β”€ ...
               └── LR_bicubic
                   └──X2
                      β”œβ”€β”€babyx2.png
                      β”œβ”€β”€ ...
          β”œβ”€β”€ Set14
          β”œβ”€β”€ ...    

Test & Evaluation

    parser = argparse.ArgumentParser(description='EDSR and MDSR')
    parser.add_argument('--onnx_path', type=str, default='SESR_int8.onnx',
                    help='onnx path')
    parser.add_argument('--image_path', default='test_data/test.png',
                    help='path of your image')
    parser.add_argument('--output_path', default='test_data/sr.png',
                    help='path of your image')
    parser.add_argument('--ipu', action='store_true',
                    help='use ipu')
    parser.add_argument('--provider_config', type=str, default=None,
                    help='provider config path')
    args = parser.parse_args()
    if args.ipu:
        providers = ["VitisAIExecutionProvider"]
        provider_options = [{"config_file": args.provider_config}]
    else:
        providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
        provider_options = None
   
    onnx_file_name = args.onnx_path
    image_path = args.image_path
    output_path = args.output_path

    ort_session = onnxruntime.InferenceSession(onnx_file_name,  providers=providers, provider_options=provider_options) 
    lr = cv2.imread(image_path)[np.newaxis,:,:,:].transpose((0,3,1,2)).astype(np.float32)
    sr = tiling_inference(ort_session, lr, 8, (56, 56))
    sr = np.clip(sr, 0, 255)
    sr = sr.squeeze().transpose((1,2,0)).astype(np.uint8)
    sr = cv2.imwrite(output_path, sr)
  • Run inference for a single image
python one_image_inference.py --onnx_path SESR_int8.onnx --image_path /Path/To/Your/Image --ipu --provider_config Path/To/vaip_config.json

Note: vaip_config.json is located at the setup package of Ryzen AI (refer to Installation)

  • Test accuracy of the quantized model
python test.py --onnx_path SESR_int8.onnx --data_test Set5 --ipu --provider_config Path/To/vaip_config.json 

Performance

Method Scale Flops Set5
SESR-S (float) X2 10.22G 37.21
SESR-S (INT8) X2 10.22G 36.81
  • Note: the Flops is calculated with the input resolution is 256x256
@misc{bhardwaj2022collapsible,
      title={Collapsible Linear Blocks for Super-Efficient Super Resolution}, 
      author={Kartikeya Bhardwaj and Milos Milosavljevic and Liam O'Neil and Dibakar Gope and Ramon Matas and Alex Chalfin and Naveen Suda and Lingchuan Meng and Danny Loh},
      year={2022},
      eprint={2103.09404},
      archivePrefix={arXiv},
      primaryClass={eess.IV}
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Datasets used to train amd/sesr