|
--- |
|
license: other |
|
license_name: amazon-service-terms |
|
license_link: https://aws.amazon.com/service-terms/ |
|
language: |
|
- en |
|
- fr |
|
- de |
|
- es |
|
- ja |
|
- zh |
|
- hi |
|
- ar |
|
- it |
|
- pt |
|
- sv |
|
- ko |
|
- he |
|
- cs |
|
- tr |
|
- tl |
|
- ru |
|
- nl |
|
- pl |
|
- ta |
|
- mr |
|
- ml |
|
- te |
|
- kn |
|
- vi |
|
- id |
|
- fa |
|
- hu |
|
- el |
|
- ro |
|
- da |
|
- th |
|
- fi |
|
- sk |
|
- uk |
|
- 'no' |
|
- bg |
|
- ca |
|
- sr |
|
- hr |
|
- lt |
|
- sl |
|
- et |
|
- la |
|
- bn |
|
- lv |
|
- ms |
|
- bs |
|
- sq |
|
- az |
|
- gl |
|
- is |
|
- ka |
|
- mk |
|
- eu |
|
- hy |
|
- ne |
|
- ur |
|
- kk |
|
- mn |
|
- be |
|
- uz |
|
- km |
|
- nn |
|
- gu |
|
- my |
|
- cy |
|
- eo |
|
- si |
|
- tt |
|
- sw |
|
- af |
|
- ga |
|
- pa |
|
- ku |
|
- ky |
|
- tg |
|
- or |
|
- lo |
|
- fo |
|
- mt |
|
- so |
|
- lb |
|
- am |
|
- oc |
|
- jv |
|
- ha |
|
- ps |
|
- sa |
|
- fy |
|
- mg |
|
- as |
|
- ba |
|
- br |
|
- tk |
|
- co |
|
- dv |
|
- rw |
|
- ht |
|
- yi |
|
- sd |
|
- zu |
|
- gd |
|
- bo |
|
- ug |
|
- mi |
|
- rm |
|
- xh |
|
- su |
|
- yo |
|
tags: |
|
- feature-extraction |
|
- sentence-similarity |
|
- mteb |
|
inference: false |
|
model-index: |
|
- name: Titan-text-embeddings-v2 |
|
results: |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (en) |
|
config: en |
|
split: test |
|
revision: e8379541af4e31359cca9fbcf4b00f2671dba205 |
|
metrics: |
|
- type: accuracy |
|
value: 79.31343283582089 |
|
- type: ap |
|
value: 43.9465851246623 |
|
- type: f1 |
|
value: 73.6131343594374 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (de) |
|
config: de |
|
split: test |
|
revision: e8379541af4e31359cca9fbcf4b00f2671dba205 |
|
metrics: |
|
- type: accuracy |
|
value: 70.94218415417559 |
|
- type: ap |
|
value: 82.30115528468109 |
|
- type: f1 |
|
value: 69.37963699148699 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (en-ext) |
|
config: en-ext |
|
split: test |
|
revision: e8379541af4e31359cca9fbcf4b00f2671dba205 |
|
metrics: |
|
- type: accuracy |
|
value: 82.29385307346327 |
|
- type: ap |
|
value: 29.956638709449372 |
|
- type: f1 |
|
value: 68.88158061498754 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (ja) |
|
config: ja |
|
split: test |
|
revision: e8379541af4e31359cca9fbcf4b00f2671dba205 |
|
metrics: |
|
- type: accuracy |
|
value: 80.06423982869379 |
|
- type: ap |
|
value: 25.2439835379337 |
|
- type: f1 |
|
value: 65.53837311569734 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_polarity |
|
name: MTEB AmazonPolarityClassification |
|
config: default |
|
split: test |
|
revision: e2d317d38cd51312af73b3d32a06d1a08b442046 |
|
metrics: |
|
- type: accuracy |
|
value: 76.66435 |
|
- type: ap |
|
value: 70.76988138513991 |
|
- type: f1 |
|
value: 76.54117595647566 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (en) |
|
config: en |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 35.276 |
|
- type: f1 |
|
value: 34.90637768461089 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (de) |
|
config: de |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 38.826 |
|
- type: f1 |
|
value: 37.71339372044998 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (es) |
|
config: es |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 39.385999999999996 |
|
- type: f1 |
|
value: 38.24347249789392 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (fr) |
|
config: fr |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 39.472 |
|
- type: f1 |
|
value: 38.37157729490788 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (ja) |
|
config: ja |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 35.897999999999996 |
|
- type: f1 |
|
value: 35.187204289589346 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (zh) |
|
config: zh |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 36.068 |
|
- type: f1 |
|
value: 35.042441064207175 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: arguana |
|
name: MTEB ArguAna |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 27.027 |
|
- type: map_at_10 |
|
value: 42.617 |
|
- type: map_at_100 |
|
value: 43.686 |
|
- type: map_at_1000 |
|
value: 43.695 |
|
- type: map_at_3 |
|
value: 37.684 |
|
- type: map_at_5 |
|
value: 40.532000000000004 |
|
- type: mrr_at_1 |
|
value: 27.667 |
|
- type: mrr_at_10 |
|
value: 42.88 |
|
- type: mrr_at_100 |
|
value: 43.929 |
|
- type: mrr_at_1000 |
|
value: 43.938 |
|
- type: mrr_at_3 |
|
value: 37.933 |
|
- type: mrr_at_5 |
|
value: 40.774 |
|
- type: ndcg_at_1 |
|
value: 27.027 |
|
- type: ndcg_at_10 |
|
value: 51.312000000000005 |
|
- type: ndcg_at_100 |
|
value: 55.696 |
|
- type: ndcg_at_1000 |
|
value: 55.896 |
|
- type: ndcg_at_3 |
|
value: 41.124 |
|
- type: ndcg_at_5 |
|
value: 46.283 |
|
- type: precision_at_1 |
|
value: 27.027 |
|
- type: precision_at_10 |
|
value: 7.9159999999999995 |
|
- type: precision_at_100 |
|
value: 0.979 |
|
- type: precision_at_1000 |
|
value: 0.099 |
|
- type: precision_at_3 |
|
value: 17.022000000000002 |
|
- type: precision_at_5 |
|
value: 12.731 |
|
- type: recall_at_1 |
|
value: 27.027 |
|
- type: recall_at_10 |
|
value: 79.161 |
|
- type: recall_at_100 |
|
value: 97.937 |
|
- type: recall_at_1000 |
|
value: 99.431 |
|
- type: recall_at_3 |
|
value: 51.06699999999999 |
|
- type: recall_at_5 |
|
value: 63.656 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-p2p |
|
name: MTEB ArxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d |
|
metrics: |
|
- type: v_measure |
|
value: 41.775131599226874 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-s2s |
|
name: MTEB ArxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 |
|
metrics: |
|
- type: v_measure |
|
value: 34.134214263072494 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/askubuntudupquestions-reranking |
|
name: MTEB AskUbuntuDupQuestions |
|
config: default |
|
split: test |
|
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 |
|
metrics: |
|
- type: map |
|
value: 63.2885651257187 |
|
- type: mrr |
|
value: 76.37712702809655 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/biosses-sts |
|
name: MTEB BIOSSES |
|
config: default |
|
split: test |
|
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 89.53738990667027 |
|
- type: cos_sim_spearman |
|
value: 87.13210584606783 |
|
- type: euclidean_pearson |
|
value: 87.33265405736388 |
|
- type: euclidean_spearman |
|
value: 87.18632394893399 |
|
- type: manhattan_pearson |
|
value: 87.33673166528312 |
|
- type: manhattan_spearman |
|
value: 86.9736685010257 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/bucc-bitext-mining |
|
name: MTEB BUCC (de-en) |
|
config: de-en |
|
split: test |
|
revision: d51519689f32196a32af33b075a01d0e7c51e252 |
|
metrics: |
|
- type: accuracy |
|
value: 98.32985386221294 |
|
- type: f1 |
|
value: 98.18371607515658 |
|
- type: precision |
|
value: 98.1106471816284 |
|
- type: recall |
|
value: 98.32985386221294 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/bucc-bitext-mining |
|
name: MTEB BUCC (fr-en) |
|
config: fr-en |
|
split: test |
|
revision: d51519689f32196a32af33b075a01d0e7c51e252 |
|
metrics: |
|
- type: accuracy |
|
value: 98.20603125687872 |
|
- type: f1 |
|
value: 98.04461075647515 |
|
- type: precision |
|
value: 97.96390050627338 |
|
- type: recall |
|
value: 98.20603125687872 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/bucc-bitext-mining |
|
name: MTEB BUCC (ru-en) |
|
config: ru-en |
|
split: test |
|
revision: d51519689f32196a32af33b075a01d0e7c51e252 |
|
metrics: |
|
- type: accuracy |
|
value: 94.8874263941808 |
|
- type: f1 |
|
value: 94.57568410114305 |
|
- type: precision |
|
value: 94.42096755570951 |
|
- type: recall |
|
value: 94.8874263941808 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/bucc-bitext-mining |
|
name: MTEB BUCC (zh-en) |
|
config: zh-en |
|
split: test |
|
revision: d51519689f32196a32af33b075a01d0e7c51e252 |
|
metrics: |
|
- type: accuracy |
|
value: 96.78778304370721 |
|
- type: f1 |
|
value: 96.75267684746358 |
|
- type: precision |
|
value: 96.73512374934175 |
|
- type: recall |
|
value: 96.78778304370721 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/banking77 |
|
name: MTEB Banking77Classification |
|
config: default |
|
split: test |
|
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 |
|
metrics: |
|
- type: accuracy |
|
value: 84.3051948051948 |
|
- type: f1 |
|
value: 83.97876601554812 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-p2p |
|
name: MTEB BiorxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 |
|
metrics: |
|
- type: v_measure |
|
value: 35.005716163806575 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-s2s |
|
name: MTEB BiorxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 |
|
metrics: |
|
- type: v_measure |
|
value: 30.999141295578852 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackAndroidRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 36.153 |
|
- type: map_at_10 |
|
value: 48.742000000000004 |
|
- type: map_at_100 |
|
value: 50.253 |
|
- type: map_at_1000 |
|
value: 50.373999999999995 |
|
- type: map_at_3 |
|
value: 45.089 |
|
- type: map_at_5 |
|
value: 47.08 |
|
- type: mrr_at_1 |
|
value: 44.635000000000005 |
|
- type: mrr_at_10 |
|
value: 54.715 |
|
- type: mrr_at_100 |
|
value: 55.300000000000004 |
|
- type: mrr_at_1000 |
|
value: 55.337 |
|
- type: mrr_at_3 |
|
value: 52.527 |
|
- type: mrr_at_5 |
|
value: 53.76499999999999 |
|
- type: ndcg_at_1 |
|
value: 44.635000000000005 |
|
- type: ndcg_at_10 |
|
value: 55.31 |
|
- type: ndcg_at_100 |
|
value: 60.084 |
|
- type: ndcg_at_1000 |
|
value: 61.645 |
|
- type: ndcg_at_3 |
|
value: 50.876999999999995 |
|
- type: ndcg_at_5 |
|
value: 52.764 |
|
- type: precision_at_1 |
|
value: 44.635000000000005 |
|
- type: precision_at_10 |
|
value: 10.687000000000001 |
|
- type: precision_at_100 |
|
value: 1.66 |
|
- type: precision_at_1000 |
|
value: 0.212 |
|
- type: precision_at_3 |
|
value: 24.94 |
|
- type: precision_at_5 |
|
value: 17.596999999999998 |
|
- type: recall_at_1 |
|
value: 36.153 |
|
- type: recall_at_10 |
|
value: 67.308 |
|
- type: recall_at_100 |
|
value: 87.199 |
|
- type: recall_at_1000 |
|
value: 96.904 |
|
- type: recall_at_3 |
|
value: 53.466 |
|
- type: recall_at_5 |
|
value: 59.512 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackEnglishRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 32.0 |
|
- type: map_at_10 |
|
value: 43.646 |
|
- type: map_at_100 |
|
value: 44.933 |
|
- type: map_at_1000 |
|
value: 45.049 |
|
- type: map_at_3 |
|
value: 40.333999999999996 |
|
- type: map_at_5 |
|
value: 42.108000000000004 |
|
- type: mrr_at_1 |
|
value: 40.382 |
|
- type: mrr_at_10 |
|
value: 49.738 |
|
- type: mrr_at_100 |
|
value: 50.331 |
|
- type: mrr_at_1000 |
|
value: 50.364 |
|
- type: mrr_at_3 |
|
value: 47.442 |
|
- type: mrr_at_5 |
|
value: 48.719 |
|
- type: ndcg_at_1 |
|
value: 40.382 |
|
- type: ndcg_at_10 |
|
value: 49.808 |
|
- type: ndcg_at_100 |
|
value: 54.053 |
|
- type: ndcg_at_1000 |
|
value: 55.753 |
|
- type: ndcg_at_3 |
|
value: 45.355000000000004 |
|
- type: ndcg_at_5 |
|
value: 47.215 |
|
- type: precision_at_1 |
|
value: 40.382 |
|
- type: precision_at_10 |
|
value: 9.58 |
|
- type: precision_at_100 |
|
value: 1.488 |
|
- type: precision_at_1000 |
|
value: 0.192 |
|
- type: precision_at_3 |
|
value: 22.272 |
|
- type: precision_at_5 |
|
value: 15.604999999999999 |
|
- type: recall_at_1 |
|
value: 32.0 |
|
- type: recall_at_10 |
|
value: 60.839 |
|
- type: recall_at_100 |
|
value: 78.869 |
|
- type: recall_at_1000 |
|
value: 89.384 |
|
- type: recall_at_3 |
|
value: 47.226 |
|
- type: recall_at_5 |
|
value: 52.864 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackGamingRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 44.084 |
|
- type: map_at_10 |
|
value: 56.591 |
|
- type: map_at_100 |
|
value: 57.533 |
|
- type: map_at_1000 |
|
value: 57.583 |
|
- type: map_at_3 |
|
value: 53.356 |
|
- type: map_at_5 |
|
value: 55.236 |
|
- type: mrr_at_1 |
|
value: 50.532999999999994 |
|
- type: mrr_at_10 |
|
value: 59.974000000000004 |
|
- type: mrr_at_100 |
|
value: 60.557 |
|
- type: mrr_at_1000 |
|
value: 60.584 |
|
- type: mrr_at_3 |
|
value: 57.774 |
|
- type: mrr_at_5 |
|
value: 59.063 |
|
- type: ndcg_at_1 |
|
value: 50.532999999999994 |
|
- type: ndcg_at_10 |
|
value: 62.265 |
|
- type: ndcg_at_100 |
|
value: 65.78 |
|
- type: ndcg_at_1000 |
|
value: 66.76299999999999 |
|
- type: ndcg_at_3 |
|
value: 57.154 |
|
- type: ndcg_at_5 |
|
value: 59.708000000000006 |
|
- type: precision_at_1 |
|
value: 50.532999999999994 |
|
- type: precision_at_10 |
|
value: 9.85 |
|
- type: precision_at_100 |
|
value: 1.247 |
|
- type: precision_at_1000 |
|
value: 0.13699999999999998 |
|
- type: precision_at_3 |
|
value: 25.434 |
|
- type: precision_at_5 |
|
value: 17.279 |
|
- type: recall_at_1 |
|
value: 44.084 |
|
- type: recall_at_10 |
|
value: 75.576 |
|
- type: recall_at_100 |
|
value: 90.524 |
|
- type: recall_at_1000 |
|
value: 97.38799999999999 |
|
- type: recall_at_3 |
|
value: 61.792 |
|
- type: recall_at_5 |
|
value: 68.112 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackGisRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 29.203000000000003 |
|
- type: map_at_10 |
|
value: 38.078 |
|
- type: map_at_100 |
|
value: 39.144 |
|
- type: map_at_1000 |
|
value: 39.222 |
|
- type: map_at_3 |
|
value: 35.278999999999996 |
|
- type: map_at_5 |
|
value: 36.812 |
|
- type: mrr_at_1 |
|
value: 31.299 |
|
- type: mrr_at_10 |
|
value: 39.879 |
|
- type: mrr_at_100 |
|
value: 40.832 |
|
- type: mrr_at_1000 |
|
value: 40.891 |
|
- type: mrr_at_3 |
|
value: 37.513999999999996 |
|
- type: mrr_at_5 |
|
value: 38.802 |
|
- type: ndcg_at_1 |
|
value: 31.299 |
|
- type: ndcg_at_10 |
|
value: 43.047999999999995 |
|
- type: ndcg_at_100 |
|
value: 48.101 |
|
- type: ndcg_at_1000 |
|
value: 49.958999999999996 |
|
- type: ndcg_at_3 |
|
value: 37.778 |
|
- type: ndcg_at_5 |
|
value: 40.257 |
|
- type: precision_at_1 |
|
value: 31.299 |
|
- type: precision_at_10 |
|
value: 6.508 |
|
- type: precision_at_100 |
|
value: 0.9530000000000001 |
|
- type: precision_at_1000 |
|
value: 0.11399999999999999 |
|
- type: precision_at_3 |
|
value: 15.744 |
|
- type: precision_at_5 |
|
value: 10.893 |
|
- type: recall_at_1 |
|
value: 29.203000000000003 |
|
- type: recall_at_10 |
|
value: 56.552 |
|
- type: recall_at_100 |
|
value: 79.21000000000001 |
|
- type: recall_at_1000 |
|
value: 92.884 |
|
- type: recall_at_3 |
|
value: 42.441 |
|
- type: recall_at_5 |
|
value: 48.399 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackMathematicaRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 19.029 |
|
- type: map_at_10 |
|
value: 28.410000000000004 |
|
- type: map_at_100 |
|
value: 29.773 |
|
- type: map_at_1000 |
|
value: 29.887000000000004 |
|
- type: map_at_3 |
|
value: 25.374000000000002 |
|
- type: map_at_5 |
|
value: 27.162 |
|
- type: mrr_at_1 |
|
value: 23.632 |
|
- type: mrr_at_10 |
|
value: 33.0 |
|
- type: mrr_at_100 |
|
value: 34.043 |
|
- type: mrr_at_1000 |
|
value: 34.105999999999995 |
|
- type: mrr_at_3 |
|
value: 30.245 |
|
- type: mrr_at_5 |
|
value: 31.830000000000002 |
|
- type: ndcg_at_1 |
|
value: 23.632 |
|
- type: ndcg_at_10 |
|
value: 34.192 |
|
- type: ndcg_at_100 |
|
value: 40.29 |
|
- type: ndcg_at_1000 |
|
value: 42.753 |
|
- type: ndcg_at_3 |
|
value: 28.811999999999998 |
|
- type: ndcg_at_5 |
|
value: 31.46 |
|
- type: precision_at_1 |
|
value: 23.632 |
|
- type: precision_at_10 |
|
value: 6.455 |
|
- type: precision_at_100 |
|
value: 1.095 |
|
- type: precision_at_1000 |
|
value: 0.14200000000000002 |
|
- type: precision_at_3 |
|
value: 14.096 |
|
- type: precision_at_5 |
|
value: 10.448 |
|
- type: recall_at_1 |
|
value: 19.029 |
|
- type: recall_at_10 |
|
value: 47.278999999999996 |
|
- type: recall_at_100 |
|
value: 72.977 |
|
- type: recall_at_1000 |
|
value: 90.17699999999999 |
|
- type: recall_at_3 |
|
value: 32.519 |
|
- type: recall_at_5 |
|
value: 39.156 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackPhysicsRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 30.983 |
|
- type: map_at_10 |
|
value: 42.595 |
|
- type: map_at_100 |
|
value: 43.906 |
|
- type: map_at_1000 |
|
value: 44.001000000000005 |
|
- type: map_at_3 |
|
value: 39.245000000000005 |
|
- type: map_at_5 |
|
value: 41.14 |
|
- type: mrr_at_1 |
|
value: 38.114 |
|
- type: mrr_at_10 |
|
value: 48.181000000000004 |
|
- type: mrr_at_100 |
|
value: 48.935 |
|
- type: mrr_at_1000 |
|
value: 48.972 |
|
- type: mrr_at_3 |
|
value: 45.877 |
|
- type: mrr_at_5 |
|
value: 47.249 |
|
- type: ndcg_at_1 |
|
value: 38.114 |
|
- type: ndcg_at_10 |
|
value: 48.793 |
|
- type: ndcg_at_100 |
|
value: 54.001999999999995 |
|
- type: ndcg_at_1000 |
|
value: 55.749 |
|
- type: ndcg_at_3 |
|
value: 43.875 |
|
- type: ndcg_at_5 |
|
value: 46.23 |
|
- type: precision_at_1 |
|
value: 38.114 |
|
- type: precision_at_10 |
|
value: 8.98 |
|
- type: precision_at_100 |
|
value: 1.3390000000000002 |
|
- type: precision_at_1000 |
|
value: 0.166 |
|
- type: precision_at_3 |
|
value: 21.303 |
|
- type: precision_at_5 |
|
value: 15.072 |
|
- type: recall_at_1 |
|
value: 30.983 |
|
- type: recall_at_10 |
|
value: 61.47 |
|
- type: recall_at_100 |
|
value: 83.14399999999999 |
|
- type: recall_at_1000 |
|
value: 94.589 |
|
- type: recall_at_3 |
|
value: 47.019 |
|
- type: recall_at_5 |
|
value: 53.445 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackProgrammersRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 29.707 |
|
- type: map_at_10 |
|
value: 40.900999999999996 |
|
- type: map_at_100 |
|
value: 42.369 |
|
- type: map_at_1000 |
|
value: 42.455 |
|
- type: map_at_3 |
|
value: 37.416 |
|
- type: map_at_5 |
|
value: 39.483000000000004 |
|
- type: mrr_at_1 |
|
value: 36.301 |
|
- type: mrr_at_10 |
|
value: 46.046 |
|
- type: mrr_at_100 |
|
value: 46.922999999999995 |
|
- type: mrr_at_1000 |
|
value: 46.964 |
|
- type: mrr_at_3 |
|
value: 43.436 |
|
- type: mrr_at_5 |
|
value: 45.04 |
|
- type: ndcg_at_1 |
|
value: 36.301 |
|
- type: ndcg_at_10 |
|
value: 46.955999999999996 |
|
- type: ndcg_at_100 |
|
value: 52.712 |
|
- type: ndcg_at_1000 |
|
value: 54.447 |
|
- type: ndcg_at_3 |
|
value: 41.643 |
|
- type: ndcg_at_5 |
|
value: 44.305 |
|
- type: precision_at_1 |
|
value: 36.301 |
|
- type: precision_at_10 |
|
value: 8.607 |
|
- type: precision_at_100 |
|
value: 1.34 |
|
- type: precision_at_1000 |
|
value: 0.164 |
|
- type: precision_at_3 |
|
value: 19.901 |
|
- type: precision_at_5 |
|
value: 14.429 |
|
- type: recall_at_1 |
|
value: 29.707 |
|
- type: recall_at_10 |
|
value: 59.559 |
|
- type: recall_at_100 |
|
value: 83.60499999999999 |
|
- type: recall_at_1000 |
|
value: 95.291 |
|
- type: recall_at_3 |
|
value: 44.774 |
|
- type: recall_at_5 |
|
value: 51.67 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 29.455416666666668 |
|
- type: map_at_10 |
|
value: 39.61333333333334 |
|
- type: map_at_100 |
|
value: 40.85875 |
|
- type: map_at_1000 |
|
value: 40.96791666666667 |
|
- type: map_at_3 |
|
value: 36.48874999999999 |
|
- type: map_at_5 |
|
value: 38.24341666666667 |
|
- type: mrr_at_1 |
|
value: 34.80258333333334 |
|
- type: mrr_at_10 |
|
value: 43.783 |
|
- type: mrr_at_100 |
|
value: 44.591833333333334 |
|
- type: mrr_at_1000 |
|
value: 44.64208333333333 |
|
- type: mrr_at_3 |
|
value: 41.38974999999999 |
|
- type: mrr_at_5 |
|
value: 42.74566666666667 |
|
- type: ndcg_at_1 |
|
value: 34.80258333333334 |
|
- type: ndcg_at_10 |
|
value: 45.2705 |
|
- type: ndcg_at_100 |
|
value: 50.31224999999999 |
|
- type: ndcg_at_1000 |
|
value: 52.27916666666667 |
|
- type: ndcg_at_3 |
|
value: 40.2745 |
|
- type: ndcg_at_5 |
|
value: 42.61575 |
|
- type: precision_at_1 |
|
value: 34.80258333333334 |
|
- type: precision_at_10 |
|
value: 7.97075 |
|
- type: precision_at_100 |
|
value: 1.2400000000000002 |
|
- type: precision_at_1000 |
|
value: 0.1595 |
|
- type: precision_at_3 |
|
value: 18.627583333333337 |
|
- type: precision_at_5 |
|
value: 13.207000000000003 |
|
- type: recall_at_1 |
|
value: 29.455416666666668 |
|
- type: recall_at_10 |
|
value: 57.66091666666665 |
|
- type: recall_at_100 |
|
value: 79.51966666666665 |
|
- type: recall_at_1000 |
|
value: 93.01883333333333 |
|
- type: recall_at_3 |
|
value: 43.580416666666665 |
|
- type: recall_at_5 |
|
value: 49.7025 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackStatsRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 27.569 |
|
- type: map_at_10 |
|
value: 34.73 |
|
- type: map_at_100 |
|
value: 35.708 |
|
- type: map_at_1000 |
|
value: 35.808 |
|
- type: map_at_3 |
|
value: 32.62 |
|
- type: map_at_5 |
|
value: 33.556999999999995 |
|
- type: mrr_at_1 |
|
value: 31.135 |
|
- type: mrr_at_10 |
|
value: 37.833 |
|
- type: mrr_at_100 |
|
value: 38.68 |
|
- type: mrr_at_1000 |
|
value: 38.749 |
|
- type: mrr_at_3 |
|
value: 35.915 |
|
- type: mrr_at_5 |
|
value: 36.751 |
|
- type: ndcg_at_1 |
|
value: 31.135 |
|
- type: ndcg_at_10 |
|
value: 39.047 |
|
- type: ndcg_at_100 |
|
value: 43.822 |
|
- type: ndcg_at_1000 |
|
value: 46.249 |
|
- type: ndcg_at_3 |
|
value: 35.115 |
|
- type: ndcg_at_5 |
|
value: 36.49 |
|
- type: precision_at_1 |
|
value: 31.135 |
|
- type: precision_at_10 |
|
value: 6.058 |
|
- type: precision_at_100 |
|
value: 0.923 |
|
- type: precision_at_1000 |
|
value: 0.121 |
|
- type: precision_at_3 |
|
value: 15.031 |
|
- type: precision_at_5 |
|
value: 10.030999999999999 |
|
- type: recall_at_1 |
|
value: 27.569 |
|
- type: recall_at_10 |
|
value: 49.332 |
|
- type: recall_at_100 |
|
value: 70.967 |
|
- type: recall_at_1000 |
|
value: 88.876 |
|
- type: recall_at_3 |
|
value: 37.858999999999995 |
|
- type: recall_at_5 |
|
value: 41.589 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackTexRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 19.677 |
|
- type: map_at_10 |
|
value: 28.097 |
|
- type: map_at_100 |
|
value: 29.24 |
|
- type: map_at_1000 |
|
value: 29.365000000000002 |
|
- type: map_at_3 |
|
value: 25.566 |
|
- type: map_at_5 |
|
value: 26.852999999999998 |
|
- type: mrr_at_1 |
|
value: 23.882 |
|
- type: mrr_at_10 |
|
value: 31.851000000000003 |
|
- type: mrr_at_100 |
|
value: 32.757 |
|
- type: mrr_at_1000 |
|
value: 32.83 |
|
- type: mrr_at_3 |
|
value: 29.485 |
|
- type: mrr_at_5 |
|
value: 30.744 |
|
- type: ndcg_at_1 |
|
value: 23.882 |
|
- type: ndcg_at_10 |
|
value: 33.154 |
|
- type: ndcg_at_100 |
|
value: 38.491 |
|
- type: ndcg_at_1000 |
|
value: 41.274 |
|
- type: ndcg_at_3 |
|
value: 28.648 |
|
- type: ndcg_at_5 |
|
value: 30.519000000000002 |
|
- type: precision_at_1 |
|
value: 23.882 |
|
- type: precision_at_10 |
|
value: 6.117999999999999 |
|
- type: precision_at_100 |
|
value: 1.0330000000000001 |
|
- type: precision_at_1000 |
|
value: 0.145 |
|
- type: precision_at_3 |
|
value: 13.73 |
|
- type: precision_at_5 |
|
value: 9.794 |
|
- type: recall_at_1 |
|
value: 19.677 |
|
- type: recall_at_10 |
|
value: 44.444 |
|
- type: recall_at_100 |
|
value: 68.477 |
|
- type: recall_at_1000 |
|
value: 88.23 |
|
- type: recall_at_3 |
|
value: 31.708 |
|
- type: recall_at_5 |
|
value: 36.599 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackUnixRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 30.489 |
|
- type: map_at_10 |
|
value: 40.883 |
|
- type: map_at_100 |
|
value: 42.058 |
|
- type: map_at_1000 |
|
value: 42.152 |
|
- type: map_at_3 |
|
value: 37.525999999999996 |
|
- type: map_at_5 |
|
value: 39.753 |
|
- type: mrr_at_1 |
|
value: 35.541 |
|
- type: mrr_at_10 |
|
value: 44.842999999999996 |
|
- type: mrr_at_100 |
|
value: 45.673 |
|
- type: mrr_at_1000 |
|
value: 45.723 |
|
- type: mrr_at_3 |
|
value: 42.397 |
|
- type: mrr_at_5 |
|
value: 43.937 |
|
- type: ndcg_at_1 |
|
value: 35.541 |
|
- type: ndcg_at_10 |
|
value: 46.504 |
|
- type: ndcg_at_100 |
|
value: 51.637 |
|
- type: ndcg_at_1000 |
|
value: 53.535 |
|
- type: ndcg_at_3 |
|
value: 41.127 |
|
- type: ndcg_at_5 |
|
value: 44.17 |
|
- type: precision_at_1 |
|
value: 35.541 |
|
- type: precision_at_10 |
|
value: 7.864 |
|
- type: precision_at_100 |
|
value: 1.165 |
|
- type: precision_at_1000 |
|
value: 0.14300000000000002 |
|
- type: precision_at_3 |
|
value: 18.688 |
|
- type: precision_at_5 |
|
value: 13.507 |
|
- type: recall_at_1 |
|
value: 30.489 |
|
- type: recall_at_10 |
|
value: 59.378 |
|
- type: recall_at_100 |
|
value: 81.38300000000001 |
|
- type: recall_at_1000 |
|
value: 94.294 |
|
- type: recall_at_3 |
|
value: 44.946000000000005 |
|
- type: recall_at_5 |
|
value: 52.644999999999996 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackWebmastersRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 29.981 |
|
- type: map_at_10 |
|
value: 39.688 |
|
- type: map_at_100 |
|
value: 41.400999999999996 |
|
- type: map_at_1000 |
|
value: 41.634 |
|
- type: map_at_3 |
|
value: 36.047000000000004 |
|
- type: map_at_5 |
|
value: 38.064 |
|
- type: mrr_at_1 |
|
value: 35.375 |
|
- type: mrr_at_10 |
|
value: 44.169000000000004 |
|
- type: mrr_at_100 |
|
value: 45.07 |
|
- type: mrr_at_1000 |
|
value: 45.113 |
|
- type: mrr_at_3 |
|
value: 41.502 |
|
- type: mrr_at_5 |
|
value: 43.034 |
|
- type: ndcg_at_1 |
|
value: 35.375 |
|
- type: ndcg_at_10 |
|
value: 45.959 |
|
- type: ndcg_at_100 |
|
value: 51.688 |
|
- type: ndcg_at_1000 |
|
value: 53.714 |
|
- type: ndcg_at_3 |
|
value: 40.457 |
|
- type: ndcg_at_5 |
|
value: 43.08 |
|
- type: precision_at_1 |
|
value: 35.375 |
|
- type: precision_at_10 |
|
value: 8.953 |
|
- type: precision_at_100 |
|
value: 1.709 |
|
- type: precision_at_1000 |
|
value: 0.253 |
|
- type: precision_at_3 |
|
value: 18.775 |
|
- type: precision_at_5 |
|
value: 14.032 |
|
- type: recall_at_1 |
|
value: 29.981 |
|
- type: recall_at_10 |
|
value: 57.896 |
|
- type: recall_at_100 |
|
value: 83.438 |
|
- type: recall_at_1000 |
|
value: 95.608 |
|
- type: recall_at_3 |
|
value: 42.327 |
|
- type: recall_at_5 |
|
value: 49.069 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackWordpressRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 24.59 |
|
- type: map_at_10 |
|
value: 32.999 |
|
- type: map_at_100 |
|
value: 33.987 |
|
- type: map_at_1000 |
|
value: 34.085 |
|
- type: map_at_3 |
|
value: 30.013 |
|
- type: map_at_5 |
|
value: 31.673000000000002 |
|
- type: mrr_at_1 |
|
value: 26.802 |
|
- type: mrr_at_10 |
|
value: 35.167 |
|
- type: mrr_at_100 |
|
value: 36.001 |
|
- type: mrr_at_1000 |
|
value: 36.071999999999996 |
|
- type: mrr_at_3 |
|
value: 32.562999999999995 |
|
- type: mrr_at_5 |
|
value: 34.014 |
|
- type: ndcg_at_1 |
|
value: 26.802 |
|
- type: ndcg_at_10 |
|
value: 38.21 |
|
- type: ndcg_at_100 |
|
value: 43.086999999999996 |
|
- type: ndcg_at_1000 |
|
value: 45.509 |
|
- type: ndcg_at_3 |
|
value: 32.452999999999996 |
|
- type: ndcg_at_5 |
|
value: 35.191 |
|
- type: precision_at_1 |
|
value: 26.802 |
|
- type: precision_at_10 |
|
value: 5.989 |
|
- type: precision_at_100 |
|
value: 0.928 |
|
- type: precision_at_1000 |
|
value: 0.125 |
|
- type: precision_at_3 |
|
value: 13.617 |
|
- type: precision_at_5 |
|
value: 9.797 |
|
- type: recall_at_1 |
|
value: 24.59 |
|
- type: recall_at_10 |
|
value: 52.298 |
|
- type: recall_at_100 |
|
value: 74.443 |
|
- type: recall_at_1000 |
|
value: 92.601 |
|
- type: recall_at_3 |
|
value: 36.888 |
|
- type: recall_at_5 |
|
value: 43.37 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: climate-fever |
|
name: MTEB ClimateFEVER |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 9.798 |
|
- type: map_at_10 |
|
value: 15.983 |
|
- type: map_at_100 |
|
value: 17.18 |
|
- type: map_at_1000 |
|
value: 17.329 |
|
- type: map_at_3 |
|
value: 13.594000000000001 |
|
- type: map_at_5 |
|
value: 14.984 |
|
- type: mrr_at_1 |
|
value: 21.564 |
|
- type: mrr_at_10 |
|
value: 31.415 |
|
- type: mrr_at_100 |
|
value: 32.317 |
|
- type: mrr_at_1000 |
|
value: 32.376 |
|
- type: mrr_at_3 |
|
value: 28.360000000000003 |
|
- type: mrr_at_5 |
|
value: 30.194 |
|
- type: ndcg_at_1 |
|
value: 21.564 |
|
- type: ndcg_at_10 |
|
value: 22.762 |
|
- type: ndcg_at_100 |
|
value: 28.199 |
|
- type: ndcg_at_1000 |
|
value: 31.284 |
|
- type: ndcg_at_3 |
|
value: 18.746 |
|
- type: ndcg_at_5 |
|
value: 20.434 |
|
- type: precision_at_1 |
|
value: 21.564 |
|
- type: precision_at_10 |
|
value: 6.755999999999999 |
|
- type: precision_at_100 |
|
value: 1.258 |
|
- type: precision_at_1000 |
|
value: 0.182 |
|
- type: precision_at_3 |
|
value: 13.507 |
|
- type: precision_at_5 |
|
value: 10.541 |
|
- type: recall_at_1 |
|
value: 9.798 |
|
- type: recall_at_10 |
|
value: 27.407999999999998 |
|
- type: recall_at_100 |
|
value: 46.659 |
|
- type: recall_at_1000 |
|
value: 64.132 |
|
- type: recall_at_3 |
|
value: 17.541999999999998 |
|
- type: recall_at_5 |
|
value: 22.137999999999998 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: dbpedia-entity |
|
name: MTEB DBPedia |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 8.276 |
|
- type: map_at_10 |
|
value: 18.003 |
|
- type: map_at_100 |
|
value: 23.759 |
|
- type: map_at_1000 |
|
value: 25.105 |
|
- type: map_at_3 |
|
value: 13.812 |
|
- type: map_at_5 |
|
value: 15.659999999999998 |
|
- type: mrr_at_1 |
|
value: 63.0 |
|
- type: mrr_at_10 |
|
value: 71.812 |
|
- type: mrr_at_100 |
|
value: 72.205 |
|
- type: mrr_at_1000 |
|
value: 72.21300000000001 |
|
- type: mrr_at_3 |
|
value: 70.375 |
|
- type: mrr_at_5 |
|
value: 71.188 |
|
- type: ndcg_at_1 |
|
value: 50.5 |
|
- type: ndcg_at_10 |
|
value: 36.954 |
|
- type: ndcg_at_100 |
|
value: 40.083999999999996 |
|
- type: ndcg_at_1000 |
|
value: 47.661 |
|
- type: ndcg_at_3 |
|
value: 42.666 |
|
- type: ndcg_at_5 |
|
value: 39.581 |
|
- type: precision_at_1 |
|
value: 63.0 |
|
- type: precision_at_10 |
|
value: 28.249999999999996 |
|
- type: precision_at_100 |
|
value: 8.113 |
|
- type: precision_at_1000 |
|
value: 1.7149999999999999 |
|
- type: precision_at_3 |
|
value: 47.083000000000006 |
|
- type: precision_at_5 |
|
value: 38.65 |
|
- type: recall_at_1 |
|
value: 8.276 |
|
- type: recall_at_10 |
|
value: 23.177 |
|
- type: recall_at_100 |
|
value: 45.321 |
|
- type: recall_at_1000 |
|
value: 68.742 |
|
- type: recall_at_3 |
|
value: 15.473 |
|
- type: recall_at_5 |
|
value: 18.276 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/emotion |
|
name: MTEB EmotionClassification |
|
config: default |
|
split: test |
|
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 |
|
metrics: |
|
- type: accuracy |
|
value: 55.605000000000004 |
|
- type: f1 |
|
value: 49.86208997523934 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: fever |
|
name: MTEB FEVER |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 80.079 |
|
- type: map_at_10 |
|
value: 85.143 |
|
- type: map_at_100 |
|
value: 85.287 |
|
- type: map_at_1000 |
|
value: 85.297 |
|
- type: map_at_3 |
|
value: 84.533 |
|
- type: map_at_5 |
|
value: 84.953 |
|
- type: mrr_at_1 |
|
value: 86.424 |
|
- type: mrr_at_10 |
|
value: 91.145 |
|
- type: mrr_at_100 |
|
value: 91.212 |
|
- type: mrr_at_1000 |
|
value: 91.213 |
|
- type: mrr_at_3 |
|
value: 90.682 |
|
- type: mrr_at_5 |
|
value: 91.013 |
|
- type: ndcg_at_1 |
|
value: 86.424 |
|
- type: ndcg_at_10 |
|
value: 88.175 |
|
- type: ndcg_at_100 |
|
value: 88.77199999999999 |
|
- type: ndcg_at_1000 |
|
value: 88.967 |
|
- type: ndcg_at_3 |
|
value: 87.265 |
|
- type: ndcg_at_5 |
|
value: 87.813 |
|
- type: precision_at_1 |
|
value: 86.424 |
|
- type: precision_at_10 |
|
value: 10.012 |
|
- type: precision_at_100 |
|
value: 1.042 |
|
- type: precision_at_1000 |
|
value: 0.107 |
|
- type: precision_at_3 |
|
value: 32.228 |
|
- type: precision_at_5 |
|
value: 19.724 |
|
- type: recall_at_1 |
|
value: 80.079 |
|
- type: recall_at_10 |
|
value: 91.96600000000001 |
|
- type: recall_at_100 |
|
value: 94.541 |
|
- type: recall_at_1000 |
|
value: 95.824 |
|
- type: recall_at_3 |
|
value: 89.213 |
|
- type: recall_at_5 |
|
value: 90.791 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: fiqa |
|
name: MTEB FiQA2018 |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 23.006999999999998 |
|
- type: map_at_10 |
|
value: 36.923 |
|
- type: map_at_100 |
|
value: 38.932 |
|
- type: map_at_1000 |
|
value: 39.096 |
|
- type: map_at_3 |
|
value: 32.322 |
|
- type: map_at_5 |
|
value: 35.119 |
|
- type: mrr_at_1 |
|
value: 45.37 |
|
- type: mrr_at_10 |
|
value: 53.418 |
|
- type: mrr_at_100 |
|
value: 54.174 |
|
- type: mrr_at_1000 |
|
value: 54.20700000000001 |
|
- type: mrr_at_3 |
|
value: 51.132 |
|
- type: mrr_at_5 |
|
value: 52.451 |
|
- type: ndcg_at_1 |
|
value: 45.37 |
|
- type: ndcg_at_10 |
|
value: 44.799 |
|
- type: ndcg_at_100 |
|
value: 51.605000000000004 |
|
- type: ndcg_at_1000 |
|
value: 54.30500000000001 |
|
- type: ndcg_at_3 |
|
value: 41.33 |
|
- type: ndcg_at_5 |
|
value: 42.608000000000004 |
|
- type: precision_at_1 |
|
value: 45.37 |
|
- type: precision_at_10 |
|
value: 12.33 |
|
- type: precision_at_100 |
|
value: 1.9349999999999998 |
|
- type: precision_at_1000 |
|
value: 0.241 |
|
- type: precision_at_3 |
|
value: 27.828999999999997 |
|
- type: precision_at_5 |
|
value: 20.432 |
|
- type: recall_at_1 |
|
value: 23.006999999999998 |
|
- type: recall_at_10 |
|
value: 51.06699999999999 |
|
- type: recall_at_100 |
|
value: 75.917 |
|
- type: recall_at_1000 |
|
value: 92.331 |
|
- type: recall_at_3 |
|
value: 36.544 |
|
- type: recall_at_5 |
|
value: 43.449 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: hotpotqa |
|
name: MTEB HotpotQA |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 38.196999999999996 |
|
- type: map_at_10 |
|
value: 55.554 |
|
- type: map_at_100 |
|
value: 56.309 |
|
- type: map_at_1000 |
|
value: 56.37799999999999 |
|
- type: map_at_3 |
|
value: 53.123 |
|
- type: map_at_5 |
|
value: 54.626 |
|
- type: mrr_at_1 |
|
value: 76.39399999999999 |
|
- type: mrr_at_10 |
|
value: 81.75 |
|
- type: mrr_at_100 |
|
value: 81.973 |
|
- type: mrr_at_1000 |
|
value: 81.982 |
|
- type: mrr_at_3 |
|
value: 80.79499999999999 |
|
- type: mrr_at_5 |
|
value: 81.393 |
|
- type: ndcg_at_1 |
|
value: 76.39399999999999 |
|
- type: ndcg_at_10 |
|
value: 64.14800000000001 |
|
- type: ndcg_at_100 |
|
value: 66.90899999999999 |
|
- type: ndcg_at_1000 |
|
value: 68.277 |
|
- type: ndcg_at_3 |
|
value: 60.529999999999994 |
|
- type: ndcg_at_5 |
|
value: 62.513 |
|
- type: precision_at_1 |
|
value: 76.39399999999999 |
|
- type: precision_at_10 |
|
value: 12.967999999999998 |
|
- type: precision_at_100 |
|
value: 1.5150000000000001 |
|
- type: precision_at_1000 |
|
value: 0.16999999999999998 |
|
- type: precision_at_3 |
|
value: 37.884 |
|
- type: precision_at_5 |
|
value: 24.294 |
|
- type: recall_at_1 |
|
value: 38.196999999999996 |
|
- type: recall_at_10 |
|
value: 64.84100000000001 |
|
- type: recall_at_100 |
|
value: 75.726 |
|
- type: recall_at_1000 |
|
value: 84.794 |
|
- type: recall_at_3 |
|
value: 56.826 |
|
- type: recall_at_5 |
|
value: 60.736000000000004 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/imdb |
|
name: MTEB ImdbClassification |
|
config: default |
|
split: test |
|
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 |
|
metrics: |
|
- type: accuracy |
|
value: 82.3912 |
|
- type: ap |
|
value: 76.3949298163793 |
|
- type: f1 |
|
value: 82.30848699417406 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: msmarco |
|
name: MTEB MSMARCO |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 19.454 |
|
- type: map_at_10 |
|
value: 31.22 |
|
- type: map_at_100 |
|
value: 32.475 |
|
- type: map_at_1000 |
|
value: 32.532 |
|
- type: map_at_3 |
|
value: 27.419 |
|
- type: map_at_5 |
|
value: 29.608 |
|
- type: mrr_at_1 |
|
value: 20.072000000000003 |
|
- type: mrr_at_10 |
|
value: 31.813999999999997 |
|
- type: mrr_at_100 |
|
value: 33.01 |
|
- type: mrr_at_1000 |
|
value: 33.062000000000005 |
|
- type: mrr_at_3 |
|
value: 28.055999999999997 |
|
- type: mrr_at_5 |
|
value: 30.218 |
|
- type: ndcg_at_1 |
|
value: 20.072000000000003 |
|
- type: ndcg_at_10 |
|
value: 38.0 |
|
- type: ndcg_at_100 |
|
value: 44.038 |
|
- type: ndcg_at_1000 |
|
value: 45.43 |
|
- type: ndcg_at_3 |
|
value: 30.219 |
|
- type: ndcg_at_5 |
|
value: 34.127 |
|
- type: precision_at_1 |
|
value: 20.072000000000003 |
|
- type: precision_at_10 |
|
value: 6.159 |
|
- type: precision_at_100 |
|
value: 0.9169999999999999 |
|
- type: precision_at_1000 |
|
value: 0.104 |
|
- type: precision_at_3 |
|
value: 13.071 |
|
- type: precision_at_5 |
|
value: 9.814 |
|
- type: recall_at_1 |
|
value: 19.454 |
|
- type: recall_at_10 |
|
value: 58.931 |
|
- type: recall_at_100 |
|
value: 86.886 |
|
- type: recall_at_1000 |
|
value: 97.425 |
|
- type: recall_at_3 |
|
value: 37.697 |
|
- type: recall_at_5 |
|
value: 47.101 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (en) |
|
config: en |
|
split: test |
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
metrics: |
|
- type: accuracy |
|
value: 90.46283629730961 |
|
- type: f1 |
|
value: 90.22448402668293 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (de) |
|
config: de |
|
split: test |
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
metrics: |
|
- type: accuracy |
|
value: 86.91462383770076 |
|
- type: f1 |
|
value: 85.77767304705436 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (es) |
|
config: es |
|
split: test |
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
metrics: |
|
- type: accuracy |
|
value: 87.73849232821881 |
|
- type: f1 |
|
value: 87.33680109229385 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (fr) |
|
config: fr |
|
split: test |
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
metrics: |
|
- type: accuracy |
|
value: 86.22298778578141 |
|
- type: f1 |
|
value: 85.88868176519013 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (hi) |
|
config: hi |
|
split: test |
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
metrics: |
|
- type: accuracy |
|
value: 82.91860882036572 |
|
- type: f1 |
|
value: 81.38044567838352 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (th) |
|
config: th |
|
split: test |
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
metrics: |
|
- type: accuracy |
|
value: 69.90235081374323 |
|
- type: f1 |
|
value: 68.12897827044782 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
metrics: |
|
- type: accuracy |
|
value: 66.0031919744642 |
|
- type: f1 |
|
value: 48.13490278120492 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (de) |
|
config: de |
|
split: test |
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
metrics: |
|
- type: accuracy |
|
value: 63.260073260073256 |
|
- type: f1 |
|
value: 42.627167415555505 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (es) |
|
config: es |
|
split: test |
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
metrics: |
|
- type: accuracy |
|
value: 65.06004002668445 |
|
- type: f1 |
|
value: 44.90527231209402 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (fr) |
|
config: fr |
|
split: test |
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
metrics: |
|
- type: accuracy |
|
value: 59.42687128092702 |
|
- type: f1 |
|
value: 41.79584710899656 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (hi) |
|
config: hi |
|
split: test |
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
metrics: |
|
- type: accuracy |
|
value: 59.078522768017216 |
|
- type: f1 |
|
value: 40.398016878580734 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (th) |
|
config: th |
|
split: test |
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
metrics: |
|
- type: accuracy |
|
value: 43.750452079565996 |
|
- type: f1 |
|
value: 28.985320742729865 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (af) |
|
config: af |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 47.59919300605245 |
|
- type: f1 |
|
value: 44.27505749600044 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (am) |
|
config: am |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 31.56691324815064 |
|
- type: f1 |
|
value: 30.34952276390722 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ar) |
|
config: ar |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 52.62945527908541 |
|
- type: f1 |
|
value: 49.689536347222386 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (az) |
|
config: az |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 50.0941492938803 |
|
- type: f1 |
|
value: 48.47831879848094 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (bn) |
|
config: bn |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 46.540013449899135 |
|
- type: f1 |
|
value: 44.25663324630171 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (cy) |
|
config: cy |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 44.25689307330195 |
|
- type: f1 |
|
value: 42.06066077477426 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (da) |
|
config: da |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 55.05716207128446 |
|
- type: f1 |
|
value: 52.41516089202158 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (de) |
|
config: de |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 61.86953597848015 |
|
- type: f1 |
|
value: 58.45989820228606 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (el) |
|
config: el |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 47.02084734364493 |
|
- type: f1 |
|
value: 45.21525882986924 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 69.24008069939475 |
|
- type: f1 |
|
value: 68.27971089998472 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (es) |
|
config: es |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 62.53530598520511 |
|
- type: f1 |
|
value: 61.83588971206536 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (fa) |
|
config: fa |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 55.19166106254204 |
|
- type: f1 |
|
value: 52.335787325774 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (fi) |
|
config: fi |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 48.43308675184936 |
|
- type: f1 |
|
value: 45.841102061239184 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (fr) |
|
config: fr |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 64.26698049764627 |
|
- type: f1 |
|
value: 62.25607481996241 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (he) |
|
config: he |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 57.619367854741085 |
|
- type: f1 |
|
value: 54.93671211092237 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (hi) |
|
config: hi |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 57.53530598520511 |
|
- type: f1 |
|
value: 55.36413211751344 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (hu) |
|
config: hu |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 45.66913248150638 |
|
- type: f1 |
|
value: 42.52092657926257 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (hy) |
|
config: hy |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 39.19973100201749 |
|
- type: f1 |
|
value: 37.194613407773566 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (id) |
|
config: id |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 54.99663752521856 |
|
- type: f1 |
|
value: 53.875181150315356 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (is) |
|
config: is |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 43.143913920645595 |
|
- type: f1 |
|
value: 41.756257561394456 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (it) |
|
config: it |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 60.99529253530599 |
|
- type: f1 |
|
value: 59.103812128183705 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ja) |
|
config: ja |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 64.29051782111634 |
|
- type: f1 |
|
value: 62.5268914542489 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (jv) |
|
config: jv |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 43.69199731002017 |
|
- type: f1 |
|
value: 41.71651113018154 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ka) |
|
config: ka |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 38.34566240753194 |
|
- type: f1 |
|
value: 36.935911015227894 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (km) |
|
config: km |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 34.21654337592467 |
|
- type: f1 |
|
value: 32.067289455027755 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (kn) |
|
config: kn |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 51.785474108944186 |
|
- type: f1 |
|
value: 49.29285691779668 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ko) |
|
config: ko |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 59.58977807666444 |
|
- type: f1 |
|
value: 57.81630371862734 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (lv) |
|
config: lv |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 46.53665097511768 |
|
- type: f1 |
|
value: 44.8386852929464 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ml) |
|
config: ml |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 54.468728984532625 |
|
- type: f1 |
|
value: 52.13613631138983 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (mn) |
|
config: mn |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 40.67921990585071 |
|
- type: f1 |
|
value: 39.87218130311539 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ms) |
|
config: ms |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 51.2441156691325 |
|
- type: f1 |
|
value: 48.93351041227674 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (my) |
|
config: my |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 31.76193678547411 |
|
- type: f1 |
|
value: 29.917012787908785 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (nb) |
|
config: nb |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 54.40820443846671 |
|
- type: f1 |
|
value: 51.232049156874396 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (nl) |
|
config: nl |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 60.8170813718897 |
|
- type: f1 |
|
value: 57.74887572270486 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (pl) |
|
config: pl |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 60.067249495628786 |
|
- type: f1 |
|
value: 57.60151669462318 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (pt) |
|
config: pt |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 62.73705447209146 |
|
- type: f1 |
|
value: 61.14377989075874 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ro) |
|
config: ro |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 49.68392737054472 |
|
- type: f1 |
|
value: 48.07062918679129 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ru) |
|
config: ru |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 60.85406859448555 |
|
- type: f1 |
|
value: 58.48852652838252 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (sl) |
|
config: sl |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 48.58776059179556 |
|
- type: f1 |
|
value: 46.92163099241966 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (sq) |
|
config: sq |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 47.16879623402824 |
|
- type: f1 |
|
value: 45.8155066134247 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (sv) |
|
config: sv |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 62.41425689307329 |
|
- type: f1 |
|
value: 60.097954878192574 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (sw) |
|
config: sw |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 45.97175521183591 |
|
- type: f1 |
|
value: 44.29275283000346 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ta) |
|
config: ta |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 53.597848016139885 |
|
- type: f1 |
|
value: 51.54318966923094 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (te) |
|
config: te |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 53.44653665097512 |
|
- type: f1 |
|
value: 51.60095623356469 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (th) |
|
config: th |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 46.173503698722264 |
|
- type: f1 |
|
value: 46.311285276929105 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (tl) |
|
config: tl |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 49.47881640887693 |
|
- type: f1 |
|
value: 46.63989802589145 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (tr) |
|
config: tr |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 58.02958977807666 |
|
- type: f1 |
|
value: 55.34728796730868 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ur) |
|
config: ur |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 39.26361802286483 |
|
- type: f1 |
|
value: 37.61201358829197 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (vi) |
|
config: vi |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 52.15534633490249 |
|
- type: f1 |
|
value: 50.438951980623145 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (zh-CN) |
|
config: zh-CN |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 63.39946200403498 |
|
- type: f1 |
|
value: 62.152249150179664 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (zh-TW) |
|
config: zh-TW |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 58.207800941492934 |
|
- type: f1 |
|
value: 58.318584465398104 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (af) |
|
config: af |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 58.069939475453936 |
|
- type: f1 |
|
value: 55.04073616892449 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (am) |
|
config: am |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 38.214525891055814 |
|
- type: f1 |
|
value: 36.42184260742777 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ar) |
|
config: ar |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 57.47141896435777 |
|
- type: f1 |
|
value: 57.22453431938479 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (az) |
|
config: az |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 54.37121721587089 |
|
- type: f1 |
|
value: 53.004976087120134 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (bn) |
|
config: bn |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 52.71687962340283 |
|
- type: f1 |
|
value: 51.140151342341646 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (cy) |
|
config: cy |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 49.502353732347004 |
|
- type: f1 |
|
value: 45.74604753969847 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (da) |
|
config: da |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 64.25689307330195 |
|
- type: f1 |
|
value: 62.25355539317913 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (de) |
|
config: de |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 71.27774041694688 |
|
- type: f1 |
|
value: 70.26880477280841 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (el) |
|
config: el |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 52.420981842636195 |
|
- type: f1 |
|
value: 50.824547366213565 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (en) |
|
config: en |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 74.11230665770006 |
|
- type: f1 |
|
value: 73.00723710263364 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (es) |
|
config: es |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 67.04102219233356 |
|
- type: f1 |
|
value: 66.7904194512351 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (fa) |
|
config: fa |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 60.1714862138534 |
|
- type: f1 |
|
value: 58.781208933846095 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (fi) |
|
config: fi |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 54.04841963685272 |
|
- type: f1 |
|
value: 51.185007148328545 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (fr) |
|
config: fr |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 69.76462676529927 |
|
- type: f1 |
|
value: 68.85227238388136 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (he) |
|
config: he |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 62.84801613987895 |
|
- type: f1 |
|
value: 61.18395865529196 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (hi) |
|
config: hi |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 62.17888365837256 |
|
- type: f1 |
|
value: 60.40570575783401 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (hu) |
|
config: hu |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 53.52051109616678 |
|
- type: f1 |
|
value: 51.210696278552014 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (hy) |
|
config: hy |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 45.94821788836584 |
|
- type: f1 |
|
value: 43.65062337089374 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (id) |
|
config: id |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 60.33288500336248 |
|
- type: f1 |
|
value: 59.50436947982156 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (is) |
|
config: is |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 50.09751176866174 |
|
- type: f1 |
|
value: 47.293838685239 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (it) |
|
config: it |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 66.49293880295897 |
|
- type: f1 |
|
value: 65.96586462307134 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ja) |
|
config: ja |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 68.35911230665769 |
|
- type: f1 |
|
value: 67.77840431764355 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (jv) |
|
config: jv |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 50.585070611970416 |
|
- type: f1 |
|
value: 47.957277125670295 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ka) |
|
config: ka |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 42.76059179556153 |
|
- type: f1 |
|
value: 40.446327361325565 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (km) |
|
config: km |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 40.648957632817755 |
|
- type: f1 |
|
value: 37.231284508608276 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (kn) |
|
config: kn |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 57.24613315400134 |
|
- type: f1 |
|
value: 55.14523425690653 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ko) |
|
config: ko |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 63.839946200403496 |
|
- type: f1 |
|
value: 62.6239063060589 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (lv) |
|
config: lv |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 53.14391392064559 |
|
- type: f1 |
|
value: 50.08744471966442 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ml) |
|
config: ml |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 58.8399462004035 |
|
- type: f1 |
|
value: 57.586991117740794 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (mn) |
|
config: mn |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 44.81842636180229 |
|
- type: f1 |
|
value: 42.82813975084655 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ms) |
|
config: ms |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 58.90047074646939 |
|
- type: f1 |
|
value: 56.640503134745714 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (my) |
|
config: my |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 38.52051109616678 |
|
- type: f1 |
|
value: 36.504553927569454 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (nb) |
|
config: nb |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 64.63685272360458 |
|
- type: f1 |
|
value: 62.88129994502907 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (nl) |
|
config: nl |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 67.54203093476798 |
|
- type: f1 |
|
value: 66.02745142287087 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (pl) |
|
config: pl |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 64.00470746469402 |
|
- type: f1 |
|
value: 62.91845058355313 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (pt) |
|
config: pt |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 65.69939475453934 |
|
- type: f1 |
|
value: 65.37413822081011 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ro) |
|
config: ro |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 57.19905850706121 |
|
- type: f1 |
|
value: 55.08271383695852 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ru) |
|
config: ru |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 65.42367182246134 |
|
- type: f1 |
|
value: 64.61962307022019 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (sl) |
|
config: sl |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 55.147948890383326 |
|
- type: f1 |
|
value: 53.2933851469903 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (sq) |
|
config: sq |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 55.679219905850715 |
|
- type: f1 |
|
value: 52.80159603468007 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (sv) |
|
config: sv |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 69.42165433759246 |
|
- type: f1 |
|
value: 67.99984081248608 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (sw) |
|
config: sw |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 52.30329522528581 |
|
- type: f1 |
|
value: 50.10810382364662 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ta) |
|
config: ta |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 56.186953597848024 |
|
- type: f1 |
|
value: 55.51656586643505 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (te) |
|
config: te |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 58.019502353732356 |
|
- type: f1 |
|
value: 56.260726586358736 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (th) |
|
config: th |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 52.55548083389374 |
|
- type: f1 |
|
value: 51.139712264362714 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (tl) |
|
config: tl |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 57.43443174176194 |
|
- type: f1 |
|
value: 55.76244076715635 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (tr) |
|
config: tr |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 61.55346334902488 |
|
- type: f1 |
|
value: 61.25819823057803 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ur) |
|
config: ur |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 47.114996637525216 |
|
- type: f1 |
|
value: 45.20428169546973 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (vi) |
|
config: vi |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 56.83254875588434 |
|
- type: f1 |
|
value: 56.00919757601416 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (zh-CN) |
|
config: zh-CN |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 69.57969065232012 |
|
- type: f1 |
|
value: 69.17378512156806 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (zh-TW) |
|
config: zh-TW |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 64.02488231338263 |
|
- type: f1 |
|
value: 64.09790488949963 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-p2p |
|
name: MTEB MedrxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 |
|
metrics: |
|
- type: v_measure |
|
value: 29.71446786877363 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-s2s |
|
name: MTEB MedrxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 |
|
metrics: |
|
- type: v_measure |
|
value: 28.003624498407547 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/mind_small |
|
name: MTEB MindSmallReranking |
|
config: default |
|
split: test |
|
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 |
|
metrics: |
|
- type: map |
|
value: 31.29671894458151 |
|
- type: mrr |
|
value: 32.44455140124599 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: nfcorpus |
|
name: MTEB NFCorpus |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 6.127 |
|
- type: map_at_10 |
|
value: 13.047 |
|
- type: map_at_100 |
|
value: 15.754000000000001 |
|
- type: map_at_1000 |
|
value: 16.930999999999997 |
|
- type: map_at_3 |
|
value: 9.876999999999999 |
|
- type: map_at_5 |
|
value: 11.265 |
|
- type: mrr_at_1 |
|
value: 45.511 |
|
- type: mrr_at_10 |
|
value: 54.75600000000001 |
|
- type: mrr_at_100 |
|
value: 55.33 |
|
- type: mrr_at_1000 |
|
value: 55.374 |
|
- type: mrr_at_3 |
|
value: 53.147999999999996 |
|
- type: mrr_at_5 |
|
value: 53.952999999999996 |
|
- type: ndcg_at_1 |
|
value: 43.653 |
|
- type: ndcg_at_10 |
|
value: 33.936 |
|
- type: ndcg_at_100 |
|
value: 29.952 |
|
- type: ndcg_at_1000 |
|
value: 38.356 |
|
- type: ndcg_at_3 |
|
value: 40.018 |
|
- type: ndcg_at_5 |
|
value: 37.102000000000004 |
|
- type: precision_at_1 |
|
value: 45.511 |
|
- type: precision_at_10 |
|
value: 24.768 |
|
- type: precision_at_100 |
|
value: 7.13 |
|
- type: precision_at_1000 |
|
value: 1.928 |
|
- type: precision_at_3 |
|
value: 37.461 |
|
- type: precision_at_5 |
|
value: 31.703 |
|
- type: recall_at_1 |
|
value: 6.127 |
|
- type: recall_at_10 |
|
value: 16.512999999999998 |
|
- type: recall_at_100 |
|
value: 29.057 |
|
- type: recall_at_1000 |
|
value: 59.25899999999999 |
|
- type: recall_at_3 |
|
value: 10.940999999999999 |
|
- type: recall_at_5 |
|
value: 12.925 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: nq |
|
name: MTEB NQ |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 32.228 |
|
- type: map_at_10 |
|
value: 47.56 |
|
- type: map_at_100 |
|
value: 48.539 |
|
- type: map_at_1000 |
|
value: 48.567 |
|
- type: map_at_3 |
|
value: 43.214999999999996 |
|
- type: map_at_5 |
|
value: 45.799 |
|
- type: mrr_at_1 |
|
value: 36.53 |
|
- type: mrr_at_10 |
|
value: 50.004000000000005 |
|
- type: mrr_at_100 |
|
value: 50.737 |
|
- type: mrr_at_1000 |
|
value: 50.758 |
|
- type: mrr_at_3 |
|
value: 46.543 |
|
- type: mrr_at_5 |
|
value: 48.672 |
|
- type: ndcg_at_1 |
|
value: 36.501 |
|
- type: ndcg_at_10 |
|
value: 55.103 |
|
- type: ndcg_at_100 |
|
value: 59.156 |
|
- type: ndcg_at_1000 |
|
value: 59.821999999999996 |
|
- type: ndcg_at_3 |
|
value: 47.089 |
|
- type: ndcg_at_5 |
|
value: 51.35999999999999 |
|
- type: precision_at_1 |
|
value: 36.501 |
|
- type: precision_at_10 |
|
value: 9.046999999999999 |
|
- type: precision_at_100 |
|
value: 1.13 |
|
- type: precision_at_1000 |
|
value: 0.11900000000000001 |
|
- type: precision_at_3 |
|
value: 21.398 |
|
- type: precision_at_5 |
|
value: 15.307 |
|
- type: recall_at_1 |
|
value: 32.228 |
|
- type: recall_at_10 |
|
value: 75.608 |
|
- type: recall_at_100 |
|
value: 93.062 |
|
- type: recall_at_1000 |
|
value: 98.059 |
|
- type: recall_at_3 |
|
value: 55.021 |
|
- type: recall_at_5 |
|
value: 64.873 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: quora |
|
name: MTEB QuoraRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 70.623 |
|
- type: map_at_10 |
|
value: 84.705 |
|
- type: map_at_100 |
|
value: 85.333 |
|
- type: map_at_1000 |
|
value: 85.348 |
|
- type: map_at_3 |
|
value: 81.736 |
|
- type: map_at_5 |
|
value: 83.616 |
|
- type: mrr_at_1 |
|
value: 81.28 |
|
- type: mrr_at_10 |
|
value: 87.518 |
|
- type: mrr_at_100 |
|
value: 87.619 |
|
- type: mrr_at_1000 |
|
value: 87.62 |
|
- type: mrr_at_3 |
|
value: 86.545 |
|
- type: mrr_at_5 |
|
value: 87.238 |
|
- type: ndcg_at_1 |
|
value: 81.28999999999999 |
|
- type: ndcg_at_10 |
|
value: 88.412 |
|
- type: ndcg_at_100 |
|
value: 89.603 |
|
- type: ndcg_at_1000 |
|
value: 89.696 |
|
- type: ndcg_at_3 |
|
value: 85.563 |
|
- type: ndcg_at_5 |
|
value: 87.17 |
|
- type: precision_at_1 |
|
value: 81.28999999999999 |
|
- type: precision_at_10 |
|
value: 13.439 |
|
- type: precision_at_100 |
|
value: 1.5310000000000001 |
|
- type: precision_at_1000 |
|
value: 0.157 |
|
- type: precision_at_3 |
|
value: 37.437 |
|
- type: precision_at_5 |
|
value: 24.662 |
|
- type: recall_at_1 |
|
value: 70.623 |
|
- type: recall_at_10 |
|
value: 95.531 |
|
- type: recall_at_100 |
|
value: 99.58 |
|
- type: recall_at_1000 |
|
value: 99.978 |
|
- type: recall_at_3 |
|
value: 87.368 |
|
- type: recall_at_5 |
|
value: 91.898 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering |
|
name: MTEB RedditClustering |
|
config: default |
|
split: test |
|
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb |
|
metrics: |
|
- type: v_measure |
|
value: 49.53241309124786 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering-p2p |
|
name: MTEB RedditClusteringP2P |
|
config: default |
|
split: test |
|
revision: 282350215ef01743dc01b456c7f5241fa8937f16 |
|
metrics: |
|
- type: v_measure |
|
value: 59.712004482915994 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: scidocs |
|
name: MTEB SCIDOCS |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 5.313 |
|
- type: map_at_10 |
|
value: 13.447000000000001 |
|
- type: map_at_100 |
|
value: 15.491 |
|
- type: map_at_1000 |
|
value: 15.784999999999998 |
|
- type: map_at_3 |
|
value: 9.58 |
|
- type: map_at_5 |
|
value: 11.562 |
|
- type: mrr_at_1 |
|
value: 26.200000000000003 |
|
- type: mrr_at_10 |
|
value: 37.212 |
|
- type: mrr_at_100 |
|
value: 38.190000000000005 |
|
- type: mrr_at_1000 |
|
value: 38.242 |
|
- type: mrr_at_3 |
|
value: 34.067 |
|
- type: mrr_at_5 |
|
value: 35.862 |
|
- type: ndcg_at_1 |
|
value: 26.200000000000003 |
|
- type: ndcg_at_10 |
|
value: 21.979000000000003 |
|
- type: ndcg_at_100 |
|
value: 29.726999999999997 |
|
- type: ndcg_at_1000 |
|
value: 34.766000000000005 |
|
- type: ndcg_at_3 |
|
value: 21.16 |
|
- type: ndcg_at_5 |
|
value: 18.478 |
|
- type: precision_at_1 |
|
value: 26.200000000000003 |
|
- type: precision_at_10 |
|
value: 11.25 |
|
- type: precision_at_100 |
|
value: 2.241 |
|
- type: precision_at_1000 |
|
value: 0.345 |
|
- type: precision_at_3 |
|
value: 19.633 |
|
- type: precision_at_5 |
|
value: 16.14 |
|
- type: recall_at_1 |
|
value: 5.313 |
|
- type: recall_at_10 |
|
value: 22.808 |
|
- type: recall_at_100 |
|
value: 45.540000000000006 |
|
- type: recall_at_1000 |
|
value: 70.043 |
|
- type: recall_at_3 |
|
value: 11.932 |
|
- type: recall_at_5 |
|
value: 16.347 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sickr-sts |
|
name: MTEB SICK-R |
|
config: default |
|
split: test |
|
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 75.95540796619258 |
|
- type: cos_sim_spearman |
|
value: 76.49462277620303 |
|
- type: euclidean_pearson |
|
value: 71.67643435507317 |
|
- type: euclidean_spearman |
|
value: 76.4915921108082 |
|
- type: manhattan_pearson |
|
value: 71.71412560074847 |
|
- type: manhattan_spearman |
|
value: 76.46738312094736 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts12-sts |
|
name: MTEB STS12 |
|
config: default |
|
split: test |
|
revision: a0d554a64d88156834ff5ae9920b964011b16384 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 81.48773267615617 |
|
- type: cos_sim_spearman |
|
value: 74.99867664033701 |
|
- type: euclidean_pearson |
|
value: 76.0885798115032 |
|
- type: euclidean_spearman |
|
value: 74.99438208715942 |
|
- type: manhattan_pearson |
|
value: 76.09382557464033 |
|
- type: manhattan_spearman |
|
value: 74.96139353538533 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts13-sts |
|
name: MTEB STS13 |
|
config: default |
|
split: test |
|
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 88.19022560804167 |
|
- type: cos_sim_spearman |
|
value: 87.9128142106699 |
|
- type: euclidean_pearson |
|
value: 85.51390183763914 |
|
- type: euclidean_spearman |
|
value: 87.89995488057309 |
|
- type: manhattan_pearson |
|
value: 85.44945034816052 |
|
- type: manhattan_spearman |
|
value: 87.791458898378 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts14-sts |
|
name: MTEB STS14 |
|
config: default |
|
split: test |
|
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 85.17877898640924 |
|
- type: cos_sim_spearman |
|
value: 82.25544088807465 |
|
- type: euclidean_pearson |
|
value: 82.36395988835416 |
|
- type: euclidean_spearman |
|
value: 82.26359924974219 |
|
- type: manhattan_pearson |
|
value: 82.39219808999891 |
|
- type: manhattan_spearman |
|
value: 82.27757404868157 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts15-sts |
|
name: MTEB STS15 |
|
config: default |
|
split: test |
|
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 87.66865350602554 |
|
- type: cos_sim_spearman |
|
value: 87.87150169810872 |
|
- type: euclidean_pearson |
|
value: 85.41520650056647 |
|
- type: euclidean_spearman |
|
value: 87.86636613654022 |
|
- type: manhattan_pearson |
|
value: 85.38710485867502 |
|
- type: manhattan_spearman |
|
value: 87.83513424575301 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts16-sts |
|
name: MTEB STS16 |
|
config: default |
|
split: test |
|
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 80.75527643407175 |
|
- type: cos_sim_spearman |
|
value: 80.9239008594745 |
|
- type: euclidean_pearson |
|
value: 79.37682746800515 |
|
- type: euclidean_spearman |
|
value: 80.91978947194092 |
|
- type: manhattan_pearson |
|
value: 79.38884189990698 |
|
- type: manhattan_spearman |
|
value: 80.91771608341014 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (ko-ko) |
|
config: ko-ko |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 80.24344311909609 |
|
- type: cos_sim_spearman |
|
value: 80.78933956176022 |
|
- type: euclidean_pearson |
|
value: 76.95229806538676 |
|
- type: euclidean_spearman |
|
value: 80.79706724032172 |
|
- type: manhattan_pearson |
|
value: 76.90212135774246 |
|
- type: manhattan_spearman |
|
value: 80.68727415384441 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (ar-ar) |
|
config: ar-ar |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 77.33891809228084 |
|
- type: cos_sim_spearman |
|
value: 79.37912430317627 |
|
- type: euclidean_pearson |
|
value: 72.56919843951036 |
|
- type: euclidean_spearman |
|
value: 79.3091436905072 |
|
- type: manhattan_pearson |
|
value: 72.4282811588754 |
|
- type: manhattan_spearman |
|
value: 78.90144894538078 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-ar) |
|
config: en-ar |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 59.68908656739356 |
|
- type: cos_sim_spearman |
|
value: 58.76110210983758 |
|
- type: euclidean_pearson |
|
value: 59.14749159577439 |
|
- type: euclidean_spearman |
|
value: 59.015997032145016 |
|
- type: manhattan_pearson |
|
value: 57.907675340322676 |
|
- type: manhattan_spearman |
|
value: 57.07751173022352 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-de) |
|
config: en-de |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 75.53325164873934 |
|
- type: cos_sim_spearman |
|
value: 76.13104388846271 |
|
- type: euclidean_pearson |
|
value: 74.61931031522006 |
|
- type: euclidean_spearman |
|
value: 75.96875166459931 |
|
- type: manhattan_pearson |
|
value: 74.82154350849251 |
|
- type: manhattan_spearman |
|
value: 76.64455924104236 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-en) |
|
config: en-en |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 85.4228376590724 |
|
- type: cos_sim_spearman |
|
value: 87.22764976624408 |
|
- type: euclidean_pearson |
|
value: 81.94975688107507 |
|
- type: euclidean_spearman |
|
value: 87.19193932664932 |
|
- type: manhattan_pearson |
|
value: 82.0043964628936 |
|
- type: manhattan_spearman |
|
value: 87.09130430957818 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-tr) |
|
config: en-tr |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 57.5627552601949 |
|
- type: cos_sim_spearman |
|
value: 55.5263144563657 |
|
- type: euclidean_pearson |
|
value: 57.00569241610482 |
|
- type: euclidean_spearman |
|
value: 55.35291811479459 |
|
- type: manhattan_pearson |
|
value: 56.99656284623506 |
|
- type: manhattan_spearman |
|
value: 55.593673744709946 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (es-en) |
|
config: es-en |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 69.93801311909735 |
|
- type: cos_sim_spearman |
|
value: 72.2581115470475 |
|
- type: euclidean_pearson |
|
value: 68.24881290268563 |
|
- type: euclidean_spearman |
|
value: 72.60813652864522 |
|
- type: manhattan_pearson |
|
value: 67.86369874088834 |
|
- type: manhattan_spearman |
|
value: 71.92346382988023 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (es-es) |
|
config: es-es |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 86.20555264114785 |
|
- type: cos_sim_spearman |
|
value: 85.0588060013836 |
|
- type: euclidean_pearson |
|
value: 81.78229090166155 |
|
- type: euclidean_spearman |
|
value: 85.09687374900614 |
|
- type: manhattan_pearson |
|
value: 81.77449099980244 |
|
- type: manhattan_spearman |
|
value: 84.70331476222177 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (fr-en) |
|
config: fr-en |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 73.786793911605 |
|
- type: cos_sim_spearman |
|
value: 75.63094397551554 |
|
- type: euclidean_pearson |
|
value: 71.64292842519251 |
|
- type: euclidean_spearman |
|
value: 75.60215267384011 |
|
- type: manhattan_pearson |
|
value: 72.2124078037642 |
|
- type: manhattan_spearman |
|
value: 76.34546028465175 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (it-en) |
|
config: it-en |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 69.62139987106455 |
|
- type: cos_sim_spearman |
|
value: 71.35872226722493 |
|
- type: euclidean_pearson |
|
value: 68.50103697766141 |
|
- type: euclidean_spearman |
|
value: 71.24590187948473 |
|
- type: manhattan_pearson |
|
value: 68.89236562525663 |
|
- type: manhattan_spearman |
|
value: 71.77994400789173 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (nl-en) |
|
config: nl-en |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 71.62728174871292 |
|
- type: cos_sim_spearman |
|
value: 71.98655715409397 |
|
- type: euclidean_pearson |
|
value: 70.27026741609356 |
|
- type: euclidean_spearman |
|
value: 72.14004669693777 |
|
- type: manhattan_pearson |
|
value: 70.46335140108751 |
|
- type: manhattan_spearman |
|
value: 72.6638254374311 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (en) |
|
config: en |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 71.10248717637424 |
|
- type: cos_sim_spearman |
|
value: 68.5905931564714 |
|
- type: euclidean_pearson |
|
value: 71.23290000423759 |
|
- type: euclidean_spearman |
|
value: 68.6419513130457 |
|
- type: manhattan_pearson |
|
value: 71.6886015250234 |
|
- type: manhattan_spearman |
|
value: 69.47543660368697 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (de) |
|
config: de |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 59.010555056244776 |
|
- type: cos_sim_spearman |
|
value: 60.121771179899255 |
|
- type: euclidean_pearson |
|
value: 53.04527785573465 |
|
- type: euclidean_spearman |
|
value: 60.121771179899255 |
|
- type: manhattan_pearson |
|
value: 52.931480071124234 |
|
- type: manhattan_spearman |
|
value: 60.03868409331775 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (es) |
|
config: es |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 70.6833028374664 |
|
- type: cos_sim_spearman |
|
value: 68.57396263856863 |
|
- type: euclidean_pearson |
|
value: 68.30905084522986 |
|
- type: euclidean_spearman |
|
value: 68.57396263856863 |
|
- type: manhattan_pearson |
|
value: 70.91400657516918 |
|
- type: manhattan_spearman |
|
value: 72.72240857808112 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (pl) |
|
config: pl |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 36.948290734279645 |
|
- type: cos_sim_spearman |
|
value: 42.07722031011005 |
|
- type: euclidean_pearson |
|
value: 22.539446972018467 |
|
- type: euclidean_spearman |
|
value: 42.07722031011005 |
|
- type: manhattan_pearson |
|
value: 24.119402246951786 |
|
- type: manhattan_spearman |
|
value: 45.80525501822569 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (tr) |
|
config: tr |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 66.97840719036533 |
|
- type: cos_sim_spearman |
|
value: 66.62430648804775 |
|
- type: euclidean_pearson |
|
value: 66.89526587772023 |
|
- type: euclidean_spearman |
|
value: 66.62430648804775 |
|
- type: manhattan_pearson |
|
value: 68.6929895225091 |
|
- type: manhattan_spearman |
|
value: 68.91772708432867 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (ar) |
|
config: ar |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 56.65098289103698 |
|
- type: cos_sim_spearman |
|
value: 57.436674670689214 |
|
- type: euclidean_pearson |
|
value: 51.79149892785239 |
|
- type: euclidean_spearman |
|
value: 57.436674670689214 |
|
- type: manhattan_pearson |
|
value: 52.64807953938707 |
|
- type: manhattan_spearman |
|
value: 58.94583987372767 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (ru) |
|
config: ru |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 60.669531297510225 |
|
- type: cos_sim_spearman |
|
value: 61.71342510003327 |
|
- type: euclidean_pearson |
|
value: 55.821871433553504 |
|
- type: euclidean_spearman |
|
value: 61.71342510003327 |
|
- type: manhattan_pearson |
|
value: 57.77073441351117 |
|
- type: manhattan_spearman |
|
value: 65.20759033207 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (zh) |
|
config: zh |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 64.34728960310699 |
|
- type: cos_sim_spearman |
|
value: 64.03565302589584 |
|
- type: euclidean_pearson |
|
value: 61.958942333930544 |
|
- type: euclidean_spearman |
|
value: 64.03565302589584 |
|
- type: manhattan_pearson |
|
value: 64.65072672727923 |
|
- type: manhattan_spearman |
|
value: 67.82569969943107 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (fr) |
|
config: fr |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 82.47120815594353 |
|
- type: cos_sim_spearman |
|
value: 81.46916544955101 |
|
- type: euclidean_pearson |
|
value: 79.21753533489019 |
|
- type: euclidean_spearman |
|
value: 81.46916544955101 |
|
- type: manhattan_pearson |
|
value: 78.26605518839271 |
|
- type: manhattan_spearman |
|
value: 81.29749169339514 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (de-en) |
|
config: de-en |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 63.31467231933632 |
|
- type: cos_sim_spearman |
|
value: 53.36160506603274 |
|
- type: euclidean_pearson |
|
value: 64.98434169416196 |
|
- type: euclidean_spearman |
|
value: 53.36160506603274 |
|
- type: manhattan_pearson |
|
value: 69.6837006629638 |
|
- type: manhattan_spearman |
|
value: 60.85384324700893 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (es-en) |
|
config: es-en |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 79.99425127770438 |
|
- type: cos_sim_spearman |
|
value: 77.41308957007035 |
|
- type: euclidean_pearson |
|
value: 79.69441265626801 |
|
- type: euclidean_spearman |
|
value: 77.41308957007035 |
|
- type: manhattan_pearson |
|
value: 80.3726291667624 |
|
- type: manhattan_spearman |
|
value: 79.0414050644631 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (it) |
|
config: it |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 79.13469287716659 |
|
- type: cos_sim_spearman |
|
value: 79.27976881582065 |
|
- type: euclidean_pearson |
|
value: 77.65964425780172 |
|
- type: euclidean_spearman |
|
value: 79.27976881582065 |
|
- type: manhattan_pearson |
|
value: 77.64158710257945 |
|
- type: manhattan_spearman |
|
value: 79.22242281895944 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (pl-en) |
|
config: pl-en |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 76.303314995599 |
|
- type: cos_sim_spearman |
|
value: 77.4991345414335 |
|
- type: euclidean_pearson |
|
value: 74.88826621426401 |
|
- type: euclidean_spearman |
|
value: 77.4991345414335 |
|
- type: manhattan_pearson |
|
value: 77.70223488989319 |
|
- type: manhattan_spearman |
|
value: 79.69746987627822 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (zh-en) |
|
config: zh-en |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 70.87814957197239 |
|
- type: cos_sim_spearman |
|
value: 69.86785751801642 |
|
- type: euclidean_pearson |
|
value: 68.68630146548654 |
|
- type: euclidean_spearman |
|
value: 69.8615799070054 |
|
- type: manhattan_pearson |
|
value: 61.83743315022061 |
|
- type: manhattan_spearman |
|
value: 64.35346450347738 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (es-it) |
|
config: es-it |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 74.1484689923211 |
|
- type: cos_sim_spearman |
|
value: 74.69046355179742 |
|
- type: euclidean_pearson |
|
value: 73.03951899271793 |
|
- type: euclidean_spearman |
|
value: 74.69820632954205 |
|
- type: manhattan_pearson |
|
value: 73.36810146930709 |
|
- type: manhattan_spearman |
|
value: 75.33154135287258 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (de-fr) |
|
config: de-fr |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 51.43125921362742 |
|
- type: cos_sim_spearman |
|
value: 58.25341239774093 |
|
- type: euclidean_pearson |
|
value: 48.00689582162098 |
|
- type: euclidean_spearman |
|
value: 58.533194841668426 |
|
- type: manhattan_pearson |
|
value: 46.11721778230745 |
|
- type: manhattan_spearman |
|
value: 55.026889052448134 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (de-pl) |
|
config: de-pl |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 40.066205533538046 |
|
- type: cos_sim_spearman |
|
value: 48.46991890841381 |
|
- type: euclidean_pearson |
|
value: 42.29606506858651 |
|
- type: euclidean_spearman |
|
value: 48.34674249441531 |
|
- type: manhattan_pearson |
|
value: 41.70680990555484 |
|
- type: manhattan_spearman |
|
value: 47.54609580342499 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (fr-pl) |
|
config: fr-pl |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 82.26527545520592 |
|
- type: cos_sim_spearman |
|
value: 73.24670207647144 |
|
- type: euclidean_pearson |
|
value: 81.78699781584893 |
|
- type: euclidean_spearman |
|
value: 73.24670207647144 |
|
- type: manhattan_pearson |
|
value: 83.14172292187807 |
|
- type: manhattan_spearman |
|
value: 73.24670207647144 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/stsbenchmark-sts |
|
name: MTEB STSBenchmark |
|
config: default |
|
split: test |
|
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 81.51438108053523 |
|
- type: cos_sim_spearman |
|
value: 81.9481311864648 |
|
- type: euclidean_pearson |
|
value: 78.6683040592179 |
|
- type: euclidean_spearman |
|
value: 81.9535649926177 |
|
- type: manhattan_pearson |
|
value: 78.65396325536754 |
|
- type: manhattan_spearman |
|
value: 81.96918240343872 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/scidocs-reranking |
|
name: MTEB SciDocsRR |
|
config: default |
|
split: test |
|
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab |
|
metrics: |
|
- type: map |
|
value: 80.6689275068653 |
|
- type: mrr |
|
value: 95.021337594867 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: scifact |
|
name: MTEB SciFact |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 55.193999999999996 |
|
- type: map_at_10 |
|
value: 65.814 |
|
- type: map_at_100 |
|
value: 66.428 |
|
- type: map_at_1000 |
|
value: 66.447 |
|
- type: map_at_3 |
|
value: 63.304 |
|
- type: map_at_5 |
|
value: 64.64 |
|
- type: mrr_at_1 |
|
value: 57.99999999999999 |
|
- type: mrr_at_10 |
|
value: 66.957 |
|
- type: mrr_at_100 |
|
value: 67.405 |
|
- type: mrr_at_1000 |
|
value: 67.422 |
|
- type: mrr_at_3 |
|
value: 65.0 |
|
- type: mrr_at_5 |
|
value: 66.183 |
|
- type: ndcg_at_1 |
|
value: 57.99999999999999 |
|
- type: ndcg_at_10 |
|
value: 70.523 |
|
- type: ndcg_at_100 |
|
value: 72.987 |
|
- type: ndcg_at_1000 |
|
value: 73.605 |
|
- type: ndcg_at_3 |
|
value: 66.268 |
|
- type: ndcg_at_5 |
|
value: 68.27600000000001 |
|
- type: precision_at_1 |
|
value: 57.99999999999999 |
|
- type: precision_at_10 |
|
value: 9.467 |
|
- type: precision_at_100 |
|
value: 1.073 |
|
- type: precision_at_1000 |
|
value: 0.11299999999999999 |
|
- type: precision_at_3 |
|
value: 26.444000000000003 |
|
- type: precision_at_5 |
|
value: 17.2 |
|
- type: recall_at_1 |
|
value: 55.193999999999996 |
|
- type: recall_at_10 |
|
value: 83.52199999999999 |
|
- type: recall_at_100 |
|
value: 94.5 |
|
- type: recall_at_1000 |
|
value: 99.667 |
|
- type: recall_at_3 |
|
value: 71.989 |
|
- type: recall_at_5 |
|
value: 77.31700000000001 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/sprintduplicatequestions-pairclassification |
|
name: MTEB SprintDuplicateQuestions |
|
config: default |
|
split: test |
|
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 99.73465346534654 |
|
- type: cos_sim_ap |
|
value: 92.91719494015508 |
|
- type: cos_sim_f1 |
|
value: 86.46200301962756 |
|
- type: cos_sim_precision |
|
value: 87.03140830800406 |
|
- type: cos_sim_recall |
|
value: 85.9 |
|
- type: dot_accuracy |
|
value: 99.73663366336633 |
|
- type: dot_ap |
|
value: 92.90802848215259 |
|
- type: dot_f1 |
|
value: 86.46200301962756 |
|
- type: dot_precision |
|
value: 87.03140830800406 |
|
- type: dot_recall |
|
value: 85.9 |
|
- type: euclidean_accuracy |
|
value: 99.73465346534654 |
|
- type: euclidean_ap |
|
value: 92.91627363446204 |
|
- type: euclidean_f1 |
|
value: 86.43469490670702 |
|
- type: euclidean_precision |
|
value: 87.18209562563581 |
|
- type: euclidean_recall |
|
value: 85.7 |
|
- type: manhattan_accuracy |
|
value: 99.73663366336633 |
|
- type: manhattan_ap |
|
value: 92.90219877406929 |
|
- type: manhattan_f1 |
|
value: 86.31471040492056 |
|
- type: manhattan_precision |
|
value: 88.53838065194533 |
|
- type: manhattan_recall |
|
value: 84.2 |
|
- type: max_accuracy |
|
value: 99.73663366336633 |
|
- type: max_ap |
|
value: 92.91719494015508 |
|
- type: max_f1 |
|
value: 86.46200301962756 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering |
|
name: MTEB StackExchangeClustering |
|
config: default |
|
split: test |
|
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 |
|
metrics: |
|
- type: v_measure |
|
value: 60.73098998430779 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering-p2p |
|
name: MTEB StackExchangeClusteringP2P |
|
config: default |
|
split: test |
|
revision: 815ca46b2622cec33ccafc3735d572c266efdb44 |
|
metrics: |
|
- type: v_measure |
|
value: 34.64256206757585 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/stackoverflowdupquestions-reranking |
|
name: MTEB StackOverflowDupQuestions |
|
config: default |
|
split: test |
|
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 |
|
metrics: |
|
- type: map |
|
value: 54.749150614295694 |
|
- type: mrr |
|
value: 55.78880984211867 |
|
- task: |
|
type: Summarization |
|
dataset: |
|
type: mteb/summeval |
|
name: MTEB SummEval |
|
config: default |
|
split: test |
|
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 28.863577054305907 |
|
- type: cos_sim_spearman |
|
value: 27.538596944829774 |
|
- type: dot_pearson |
|
value: 28.93043755116643 |
|
- type: dot_spearman |
|
value: 27.733110516733987 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: trec-covid |
|
name: MTEB TRECCOVID |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.22899999999999998 |
|
- type: map_at_10 |
|
value: 2.078 |
|
- type: map_at_100 |
|
value: 12.024 |
|
- type: map_at_1000 |
|
value: 29.036 |
|
- type: map_at_3 |
|
value: 0.681 |
|
- type: map_at_5 |
|
value: 1.083 |
|
- type: mrr_at_1 |
|
value: 86.0 |
|
- type: mrr_at_10 |
|
value: 92.667 |
|
- type: mrr_at_100 |
|
value: 92.667 |
|
- type: mrr_at_1000 |
|
value: 92.667 |
|
- type: mrr_at_3 |
|
value: 92.667 |
|
- type: mrr_at_5 |
|
value: 92.667 |
|
- type: ndcg_at_1 |
|
value: 82.0 |
|
- type: ndcg_at_10 |
|
value: 80.746 |
|
- type: ndcg_at_100 |
|
value: 61.090999999999994 |
|
- type: ndcg_at_1000 |
|
value: 55.034000000000006 |
|
- type: ndcg_at_3 |
|
value: 82.419 |
|
- type: ndcg_at_5 |
|
value: 81.018 |
|
- type: precision_at_1 |
|
value: 86.0 |
|
- type: precision_at_10 |
|
value: 86.2 |
|
- type: precision_at_100 |
|
value: 62.68 |
|
- type: precision_at_1000 |
|
value: 24.032 |
|
- type: precision_at_3 |
|
value: 88.667 |
|
- type: precision_at_5 |
|
value: 86.0 |
|
- type: recall_at_1 |
|
value: 0.22899999999999998 |
|
- type: recall_at_10 |
|
value: 2.263 |
|
- type: recall_at_100 |
|
value: 15.238999999999999 |
|
- type: recall_at_1000 |
|
value: 51.937 |
|
- type: recall_at_3 |
|
value: 0.719 |
|
- type: recall_at_5 |
|
value: 1.15 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (sqi-eng) |
|
config: sqi-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 19.400000000000002 |
|
- type: f1 |
|
value: 15.386076064970075 |
|
- type: precision |
|
value: 14.253878834615676 |
|
- type: recall |
|
value: 19.400000000000002 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (fry-eng) |
|
config: fry-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 42.19653179190752 |
|
- type: f1 |
|
value: 37.726396917148364 |
|
- type: precision |
|
value: 36.14643545279384 |
|
- type: recall |
|
value: 42.19653179190752 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (kur-eng) |
|
config: kur-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 18.536585365853657 |
|
- type: f1 |
|
value: 13.512010347376199 |
|
- type: precision |
|
value: 12.034068912117693 |
|
- type: recall |
|
value: 18.536585365853657 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (tur-eng) |
|
config: tur-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 81.69999999999999 |
|
- type: f1 |
|
value: 77.37888888888888 |
|
- type: precision |
|
value: 75.49583333333332 |
|
- type: recall |
|
value: 81.69999999999999 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (deu-eng) |
|
config: deu-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 97.39999999999999 |
|
- type: f1 |
|
value: 96.56666666666666 |
|
- type: precision |
|
value: 96.16666666666667 |
|
- type: recall |
|
value: 97.39999999999999 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (nld-eng) |
|
config: nld-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 90.0 |
|
- type: f1 |
|
value: 87.22333333333333 |
|
- type: precision |
|
value: 85.89166666666667 |
|
- type: recall |
|
value: 90.0 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (ron-eng) |
|
config: ron-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 64.7 |
|
- type: f1 |
|
value: 59.10904761904763 |
|
- type: precision |
|
value: 56.91968253968254 |
|
- type: recall |
|
value: 64.7 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (ang-eng) |
|
config: ang-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 38.80597014925373 |
|
- type: f1 |
|
value: 30.890784174366264 |
|
- type: precision |
|
value: 28.327114427860696 |
|
- type: recall |
|
value: 38.80597014925373 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (ido-eng) |
|
config: ido-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 53.900000000000006 |
|
- type: f1 |
|
value: 48.294138583638585 |
|
- type: precision |
|
value: 46.333495670995674 |
|
- type: recall |
|
value: 53.900000000000006 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (jav-eng) |
|
config: jav-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 11.707317073170733 |
|
- type: f1 |
|
value: 8.999999999999998 |
|
- type: precision |
|
value: 8.175377468060395 |
|
- type: recall |
|
value: 11.707317073170733 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (isl-eng) |
|
config: isl-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 15.9 |
|
- type: f1 |
|
value: 12.451226269430602 |
|
- type: precision |
|
value: 11.404807799760325 |
|
- type: recall |
|
value: 15.9 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (slv-eng) |
|
config: slv-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 41.919805589307416 |
|
- type: f1 |
|
value: 35.880619060297064 |
|
- type: precision |
|
value: 33.77682308241239 |
|
- type: recall |
|
value: 41.919805589307416 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (cym-eng) |
|
config: cym-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 10.956521739130434 |
|
- type: f1 |
|
value: 9.098715976676996 |
|
- type: precision |
|
value: 8.659935858401333 |
|
- type: recall |
|
value: 10.956521739130434 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (kaz-eng) |
|
config: kaz-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 11.652173913043478 |
|
- type: f1 |
|
value: 9.154324883225136 |
|
- type: precision |
|
value: 8.505898125360801 |
|
- type: recall |
|
value: 11.652173913043478 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (est-eng) |
|
config: est-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 9.700000000000001 |
|
- type: f1 |
|
value: 7.431679431679432 |
|
- type: precision |
|
value: 6.799925118740907 |
|
- type: recall |
|
value: 9.700000000000001 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (heb-eng) |
|
config: heb-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 77.5 |
|
- type: f1 |
|
value: 72.39999999999999 |
|
- type: precision |
|
value: 70.13444444444444 |
|
- type: recall |
|
value: 77.5 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (gla-eng) |
|
config: gla-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 5.548854041013269 |
|
- type: f1 |
|
value: 4.233155465362944 |
|
- type: precision |
|
value: 3.948150869646547 |
|
- type: recall |
|
value: 5.548854041013269 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (mar-eng) |
|
config: mar-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 73.5 |
|
- type: f1 |
|
value: 67.35333333333332 |
|
- type: precision |
|
value: 64.63666666666666 |
|
- type: recall |
|
value: 73.5 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (lat-eng) |
|
config: lat-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 27.700000000000003 |
|
- type: f1 |
|
value: 21.152765495941964 |
|
- type: precision |
|
value: 19.27832403707404 |
|
- type: recall |
|
value: 27.700000000000003 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (bel-eng) |
|
config: bel-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 48.1 |
|
- type: f1 |
|
value: 41.21001443001443 |
|
- type: precision |
|
value: 38.628495670995676 |
|
- type: recall |
|
value: 48.1 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (pms-eng) |
|
config: pms-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 40.0 |
|
- type: f1 |
|
value: 34.32060003488575 |
|
- type: precision |
|
value: 32.32134353741497 |
|
- type: recall |
|
value: 40.0 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (gle-eng) |
|
config: gle-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 6.800000000000001 |
|
- type: f1 |
|
value: 4.3954389450190465 |
|
- type: precision |
|
value: 3.893838027469606 |
|
- type: recall |
|
value: 6.800000000000001 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (pes-eng) |
|
config: pes-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 51.800000000000004 |
|
- type: f1 |
|
value: 45.04222943722944 |
|
- type: precision |
|
value: 42.541984126984126 |
|
- type: recall |
|
value: 51.800000000000004 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (nob-eng) |
|
config: nob-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 83.1 |
|
- type: f1 |
|
value: 79.20675324675324 |
|
- type: precision |
|
value: 77.44944444444444 |
|
- type: recall |
|
value: 83.1 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (bul-eng) |
|
config: bul-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 66.8 |
|
- type: f1 |
|
value: 60.25746031746031 |
|
- type: precision |
|
value: 57.55250000000001 |
|
- type: recall |
|
value: 66.8 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (cbk-eng) |
|
config: cbk-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 63.6 |
|
- type: f1 |
|
value: 56.73421356421356 |
|
- type: precision |
|
value: 54.02218253968254 |
|
- type: recall |
|
value: 63.6 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (hun-eng) |
|
config: hun-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 17.599999999999998 |
|
- type: f1 |
|
value: 13.17699134199134 |
|
- type: precision |
|
value: 11.77444805194805 |
|
- type: recall |
|
value: 17.599999999999998 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (uig-eng) |
|
config: uig-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 2.0 |
|
- type: f1 |
|
value: 1.3126923076923078 |
|
- type: precision |
|
value: 1.104952380952381 |
|
- type: recall |
|
value: 2.0 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (rus-eng) |
|
config: rus-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 88.3 |
|
- type: f1 |
|
value: 84.96333333333334 |
|
- type: precision |
|
value: 83.38333333333333 |
|
- type: recall |
|
value: 88.3 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (spa-eng) |
|
config: spa-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 94.69999999999999 |
|
- type: f1 |
|
value: 93.12333333333333 |
|
- type: precision |
|
value: 92.375 |
|
- type: recall |
|
value: 94.69999999999999 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (hye-eng) |
|
config: hye-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 0.6738544474393532 |
|
- type: f1 |
|
value: 0.3690849566291394 |
|
- type: precision |
|
value: 0.3305452159899599 |
|
- type: recall |
|
value: 0.6738544474393532 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (tel-eng) |
|
config: tel-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 71.7948717948718 |
|
- type: f1 |
|
value: 65.37037037037037 |
|
- type: precision |
|
value: 62.46438746438747 |
|
- type: recall |
|
value: 71.7948717948718 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (afr-eng) |
|
config: afr-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 56.699999999999996 |
|
- type: f1 |
|
value: 50.58054945054945 |
|
- type: precision |
|
value: 48.313047619047616 |
|
- type: recall |
|
value: 56.699999999999996 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (mon-eng) |
|
config: mon-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 13.863636363636363 |
|
- type: f1 |
|
value: 10.948429096156369 |
|
- type: precision |
|
value: 10.227287994137523 |
|
- type: recall |
|
value: 13.863636363636363 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (arz-eng) |
|
config: arz-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 62.473794549266245 |
|
- type: f1 |
|
value: 56.04172906059699 |
|
- type: precision |
|
value: 53.26694619147448 |
|
- type: recall |
|
value: 62.473794549266245 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (hrv-eng) |
|
config: hrv-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 40.0 |
|
- type: f1 |
|
value: 34.62948179271708 |
|
- type: precision |
|
value: 32.699030910609864 |
|
- type: recall |
|
value: 40.0 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (nov-eng) |
|
config: nov-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 60.311284046692606 |
|
- type: f1 |
|
value: 54.06182447038479 |
|
- type: precision |
|
value: 51.757921067259595 |
|
- type: recall |
|
value: 60.311284046692606 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (gsw-eng) |
|
config: gsw-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 43.58974358974359 |
|
- type: f1 |
|
value: 37.042359350051655 |
|
- type: precision |
|
value: 34.75783475783476 |
|
- type: recall |
|
value: 43.58974358974359 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (nds-eng) |
|
config: nds-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 56.49999999999999 |
|
- type: f1 |
|
value: 49.471269841269844 |
|
- type: precision |
|
value: 46.742182539682545 |
|
- type: recall |
|
value: 56.49999999999999 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (ukr-eng) |
|
config: ukr-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 71.5 |
|
- type: f1 |
|
value: 65.32880952380951 |
|
- type: precision |
|
value: 62.71261904761904 |
|
- type: recall |
|
value: 71.5 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (uzb-eng) |
|
config: uzb-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 11.448598130841122 |
|
- type: f1 |
|
value: 7.861361294691689 |
|
- type: precision |
|
value: 6.961045509526818 |
|
- type: recall |
|
value: 11.448598130841122 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (lit-eng) |
|
config: lit-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 13.5 |
|
- type: f1 |
|
value: 10.448586132968154 |
|
- type: precision |
|
value: 9.624691955878397 |
|
- type: recall |
|
value: 13.5 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (ina-eng) |
|
config: ina-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 82.19999999999999 |
|
- type: f1 |
|
value: 78.25366946778712 |
|
- type: precision |
|
value: 76.54291666666667 |
|
- type: recall |
|
value: 82.19999999999999 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (lfn-eng) |
|
config: lfn-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 53.5 |
|
- type: f1 |
|
value: 47.48505411255411 |
|
- type: precision |
|
value: 45.29801587301587 |
|
- type: recall |
|
value: 53.5 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (zsm-eng) |
|
config: zsm-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 61.1 |
|
- type: f1 |
|
value: 54.60758056758057 |
|
- type: precision |
|
value: 52.16455433455434 |
|
- type: recall |
|
value: 61.1 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (ita-eng) |
|
config: ita-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 85.1 |
|
- type: f1 |
|
value: 81.98506715506716 |
|
- type: precision |
|
value: 80.64754901960784 |
|
- type: recall |
|
value: 85.1 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (cmn-eng) |
|
config: cmn-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 89.2 |
|
- type: f1 |
|
value: 86.13333333333333 |
|
- type: precision |
|
value: 84.65 |
|
- type: recall |
|
value: 89.2 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (lvs-eng) |
|
config: lvs-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 13.600000000000001 |
|
- type: f1 |
|
value: 10.721816580317723 |
|
- type: precision |
|
value: 9.97922024538847 |
|
- type: recall |
|
value: 13.600000000000001 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (glg-eng) |
|
config: glg-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 79.0 |
|
- type: f1 |
|
value: 74.2652380952381 |
|
- type: precision |
|
value: 72.18690476190476 |
|
- type: recall |
|
value: 79.0 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (ceb-eng) |
|
config: ceb-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 12.833333333333332 |
|
- type: f1 |
|
value: 10.45993265993266 |
|
- type: precision |
|
value: 9.849548907882243 |
|
- type: recall |
|
value: 12.833333333333332 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (bre-eng) |
|
config: bre-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 8.3 |
|
- type: f1 |
|
value: 5.457311371692176 |
|
- type: precision |
|
value: 4.8466941508148595 |
|
- type: recall |
|
value: 8.3 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (ben-eng) |
|
config: ben-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 26.3 |
|
- type: f1 |
|
value: 20.851341154819416 |
|
- type: precision |
|
value: 19.1173617945522 |
|
- type: recall |
|
value: 26.3 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (swg-eng) |
|
config: swg-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 41.964285714285715 |
|
- type: f1 |
|
value: 36.38605442176871 |
|
- type: precision |
|
value: 34.523809523809526 |
|
- type: recall |
|
value: 41.964285714285715 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (arq-eng) |
|
config: arq-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 26.454445664105382 |
|
- type: f1 |
|
value: 20.67692765826684 |
|
- type: precision |
|
value: 18.684070229075715 |
|
- type: recall |
|
value: 26.454445664105382 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (kab-eng) |
|
config: kab-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 2.8000000000000003 |
|
- type: f1 |
|
value: 1.9487240537240536 |
|
- type: precision |
|
value: 1.7766582325720255 |
|
- type: recall |
|
value: 2.8000000000000003 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (fra-eng) |
|
config: fra-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 91.5 |
|
- type: f1 |
|
value: 89.39 |
|
- type: precision |
|
value: 88.425 |
|
- type: recall |
|
value: 91.5 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (por-eng) |
|
config: por-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 91.5 |
|
- type: f1 |
|
value: 89.38333333333333 |
|
- type: precision |
|
value: 88.36666666666667 |
|
- type: recall |
|
value: 91.5 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (tat-eng) |
|
config: tat-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 9.2 |
|
- type: f1 |
|
value: 6.672282438325198 |
|
- type: precision |
|
value: 6.046073589145276 |
|
- type: recall |
|
value: 9.2 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (oci-eng) |
|
config: oci-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 45.2 |
|
- type: f1 |
|
value: 39.12095238095238 |
|
- type: precision |
|
value: 36.820952380952384 |
|
- type: recall |
|
value: 45.2 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (pol-eng) |
|
config: pol-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 86.8 |
|
- type: f1 |
|
value: 83.35000000000001 |
|
- type: precision |
|
value: 81.825 |
|
- type: recall |
|
value: 86.8 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (war-eng) |
|
config: war-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 13.5 |
|
- type: f1 |
|
value: 10.66862856136998 |
|
- type: precision |
|
value: 9.845928551928552 |
|
- type: recall |
|
value: 13.5 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (aze-eng) |
|
config: aze-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 33.4 |
|
- type: f1 |
|
value: 27.78153389993659 |
|
- type: precision |
|
value: 25.778055555555557 |
|
- type: recall |
|
value: 33.4 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (vie-eng) |
|
config: vie-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 57.699999999999996 |
|
- type: f1 |
|
value: 50.440714285714286 |
|
- type: precision |
|
value: 47.64396825396825 |
|
- type: recall |
|
value: 57.699999999999996 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (nno-eng) |
|
config: nno-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 62.2 |
|
- type: f1 |
|
value: 56.0098625351257 |
|
- type: precision |
|
value: 53.691914098972916 |
|
- type: recall |
|
value: 62.2 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (cha-eng) |
|
config: cha-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 27.00729927007299 |
|
- type: f1 |
|
value: 22.798053527980535 |
|
- type: precision |
|
value: 21.107055961070557 |
|
- type: recall |
|
value: 27.00729927007299 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (mhr-eng) |
|
config: mhr-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 6.2 |
|
- type: f1 |
|
value: 4.295544090473964 |
|
- type: precision |
|
value: 3.913153952193392 |
|
- type: recall |
|
value: 6.2 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (dan-eng) |
|
config: dan-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 77.10000000000001 |
|
- type: f1 |
|
value: 72.49333333333334 |
|
- type: precision |
|
value: 70.53368637110017 |
|
- type: recall |
|
value: 77.10000000000001 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (ell-eng) |
|
config: ell-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 15.2 |
|
- type: f1 |
|
value: 10.429591693330824 |
|
- type: precision |
|
value: 9.145801926831338 |
|
- type: recall |
|
value: 15.2 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (amh-eng) |
|
config: amh-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 1.7857142857142856 |
|
- type: f1 |
|
value: 0.3635204081632653 |
|
- type: precision |
|
value: 0.205026455026455 |
|
- type: recall |
|
value: 1.7857142857142856 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (pam-eng) |
|
config: pam-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 6.4 |
|
- type: f1 |
|
value: 4.8412763053939525 |
|
- type: precision |
|
value: 4.444087810337809 |
|
- type: recall |
|
value: 6.4 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (hsb-eng) |
|
config: hsb-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 43.47826086956522 |
|
- type: f1 |
|
value: 37.13266949291794 |
|
- type: precision |
|
value: 34.655332590115194 |
|
- type: recall |
|
value: 43.47826086956522 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (srp-eng) |
|
config: srp-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 42.0 |
|
- type: f1 |
|
value: 35.412229437229435 |
|
- type: precision |
|
value: 32.907539682539685 |
|
- type: recall |
|
value: 42.0 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (epo-eng) |
|
config: epo-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 36.0 |
|
- type: f1 |
|
value: 30.53874458874459 |
|
- type: precision |
|
value: 28.711192408382807 |
|
- type: recall |
|
value: 36.0 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (kzj-eng) |
|
config: kzj-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 7.9 |
|
- type: f1 |
|
value: 5.80190114561213 |
|
- type: precision |
|
value: 5.298527531836355 |
|
- type: recall |
|
value: 7.9 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (awa-eng) |
|
config: awa-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 49.35064935064935 |
|
- type: f1 |
|
value: 41.57805638325119 |
|
- type: precision |
|
value: 38.87445887445887 |
|
- type: recall |
|
value: 49.35064935064935 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (fao-eng) |
|
config: fao-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 25.572519083969464 |
|
- type: f1 |
|
value: 21.338006776938073 |
|
- type: precision |
|
value: 20.194474736459465 |
|
- type: recall |
|
value: 25.572519083969464 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (mal-eng) |
|
config: mal-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 79.62154294032024 |
|
- type: f1 |
|
value: 74.47355652595827 |
|
- type: precision |
|
value: 72.2076661814653 |
|
- type: recall |
|
value: 79.62154294032024 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (ile-eng) |
|
config: ile-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 68.0 |
|
- type: f1 |
|
value: 61.80859649122807 |
|
- type: precision |
|
value: 59.30381381381381 |
|
- type: recall |
|
value: 68.0 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (bos-eng) |
|
config: bos-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 42.93785310734463 |
|
- type: f1 |
|
value: 36.72617201306135 |
|
- type: precision |
|
value: 34.72641059505466 |
|
- type: recall |
|
value: 42.93785310734463 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (cor-eng) |
|
config: cor-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 5.5 |
|
- type: f1 |
|
value: 3.8651658986175113 |
|
- type: precision |
|
value: 3.4432814407814405 |
|
- type: recall |
|
value: 5.5 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (cat-eng) |
|
config: cat-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 69.19999999999999 |
|
- type: f1 |
|
value: 63.41880952380953 |
|
- type: precision |
|
value: 61.07913419913419 |
|
- type: recall |
|
value: 69.19999999999999 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (eus-eng) |
|
config: eus-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 15.4 |
|
- type: f1 |
|
value: 11.672122577122575 |
|
- type: precision |
|
value: 10.59919974661354 |
|
- type: recall |
|
value: 15.4 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (yue-eng) |
|
config: yue-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 58.5 |
|
- type: f1 |
|
value: 51.31880452880453 |
|
- type: precision |
|
value: 48.60550125313283 |
|
- type: recall |
|
value: 58.5 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (swe-eng) |
|
config: swe-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 89.3 |
|
- type: f1 |
|
value: 86.32666666666667 |
|
- type: precision |
|
value: 84.98333333333333 |
|
- type: recall |
|
value: 89.3 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (dtp-eng) |
|
config: dtp-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 5.7 |
|
- type: f1 |
|
value: 3.8739805216757546 |
|
- type: precision |
|
value: 3.4734608954367014 |
|
- type: recall |
|
value: 5.7 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (kat-eng) |
|
config: kat-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 0.8042895442359249 |
|
- type: f1 |
|
value: 0.7596067917783735 |
|
- type: precision |
|
value: 0.7372654155495978 |
|
- type: recall |
|
value: 0.8042895442359249 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (jpn-eng) |
|
config: jpn-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 89.7 |
|
- type: f1 |
|
value: 86.92333333333333 |
|
- type: precision |
|
value: 85.64166666666667 |
|
- type: recall |
|
value: 89.7 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (csb-eng) |
|
config: csb-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 26.08695652173913 |
|
- type: f1 |
|
value: 20.517863778733343 |
|
- type: precision |
|
value: 18.901098901098898 |
|
- type: recall |
|
value: 26.08695652173913 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (xho-eng) |
|
config: xho-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 12.676056338028168 |
|
- type: f1 |
|
value: 9.526324614352783 |
|
- type: precision |
|
value: 9.006292657908235 |
|
- type: recall |
|
value: 12.676056338028168 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (orv-eng) |
|
config: orv-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 24.910179640718564 |
|
- type: f1 |
|
value: 19.645099411566473 |
|
- type: precision |
|
value: 17.676076418591386 |
|
- type: recall |
|
value: 24.910179640718564 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (ind-eng) |
|
config: ind-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 61.4 |
|
- type: f1 |
|
value: 54.64269841269841 |
|
- type: precision |
|
value: 51.981071428571425 |
|
- type: recall |
|
value: 61.4 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (tuk-eng) |
|
config: tuk-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 11.330049261083744 |
|
- type: f1 |
|
value: 9.610016420361248 |
|
- type: precision |
|
value: 9.123781574258464 |
|
- type: recall |
|
value: 11.330049261083744 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (max-eng) |
|
config: max-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 27.816901408450708 |
|
- type: f1 |
|
value: 22.51925345174495 |
|
- type: precision |
|
value: 21.10468365750056 |
|
- type: recall |
|
value: 27.816901408450708 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (swh-eng) |
|
config: swh-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 11.282051282051283 |
|
- type: f1 |
|
value: 7.777167097237831 |
|
- type: precision |
|
value: 7.050109879436802 |
|
- type: recall |
|
value: 11.282051282051283 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (hin-eng) |
|
config: hin-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 86.0 |
|
- type: f1 |
|
value: 82.05857142857143 |
|
- type: precision |
|
value: 80.25 |
|
- type: recall |
|
value: 86.0 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (dsb-eng) |
|
config: dsb-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 34.44676409185804 |
|
- type: f1 |
|
value: 28.296517215097587 |
|
- type: precision |
|
value: 26.16624956236465 |
|
- type: recall |
|
value: 34.44676409185804 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (ber-eng) |
|
config: ber-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 7.199999999999999 |
|
- type: f1 |
|
value: 5.500051631938041 |
|
- type: precision |
|
value: 5.164411510424442 |
|
- type: recall |
|
value: 7.199999999999999 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (tam-eng) |
|
config: tam-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 71.9869706840391 |
|
- type: f1 |
|
value: 65.79339227547696 |
|
- type: precision |
|
value: 63.16503800217155 |
|
- type: recall |
|
value: 71.9869706840391 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (slk-eng) |
|
config: slk-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 70.89999999999999 |
|
- type: f1 |
|
value: 65.4152380952381 |
|
- type: precision |
|
value: 63.106666666666655 |
|
- type: recall |
|
value: 70.89999999999999 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (tgl-eng) |
|
config: tgl-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 21.0 |
|
- type: f1 |
|
value: 17.86438197644649 |
|
- type: precision |
|
value: 16.84469948469949 |
|
- type: recall |
|
value: 21.0 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (ast-eng) |
|
config: ast-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 62.20472440944882 |
|
- type: f1 |
|
value: 55.81364829396325 |
|
- type: precision |
|
value: 53.262092238470196 |
|
- type: recall |
|
value: 62.20472440944882 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (mkd-eng) |
|
config: mkd-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 41.8 |
|
- type: f1 |
|
value: 34.724603174603175 |
|
- type: precision |
|
value: 32.040277777777774 |
|
- type: recall |
|
value: 41.8 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (khm-eng) |
|
config: khm-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 0.41551246537396125 |
|
- type: f1 |
|
value: 0.3462603878116343 |
|
- type: precision |
|
value: 0.32317636195752536 |
|
- type: recall |
|
value: 0.41551246537396125 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (ces-eng) |
|
config: ces-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 85.6 |
|
- type: f1 |
|
value: 81.81333333333333 |
|
- type: precision |
|
value: 80.08333333333334 |
|
- type: recall |
|
value: 85.6 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (tzl-eng) |
|
config: tzl-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 31.73076923076923 |
|
- type: f1 |
|
value: 26.097374847374844 |
|
- type: precision |
|
value: 24.31891025641026 |
|
- type: recall |
|
value: 31.73076923076923 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (urd-eng) |
|
config: urd-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 9.6 |
|
- type: f1 |
|
value: 6.598392371412457 |
|
- type: precision |
|
value: 5.855494356434758 |
|
- type: recall |
|
value: 9.6 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (ara-eng) |
|
config: ara-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 83.5 |
|
- type: f1 |
|
value: 79.65190476190476 |
|
- type: precision |
|
value: 77.875 |
|
- type: recall |
|
value: 83.5 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (kor-eng) |
|
config: kor-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 80.5 |
|
- type: f1 |
|
value: 75.75999999999999 |
|
- type: precision |
|
value: 73.60333333333332 |
|
- type: recall |
|
value: 80.5 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (yid-eng) |
|
config: yid-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 2.1226415094339623 |
|
- type: f1 |
|
value: 1.4622641509433962 |
|
- type: precision |
|
value: 1.2637578616352203 |
|
- type: recall |
|
value: 2.1226415094339623 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (fin-eng) |
|
config: fin-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 23.0 |
|
- type: f1 |
|
value: 18.111780719280716 |
|
- type: precision |
|
value: 16.497738095238095 |
|
- type: recall |
|
value: 23.0 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (tha-eng) |
|
config: tha-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 4.562043795620438 |
|
- type: f1 |
|
value: 3.1632119907667358 |
|
- type: precision |
|
value: 2.8806772100567724 |
|
- type: recall |
|
value: 4.562043795620438 |
|
- task: |
|
type: BitextMining |
|
dataset: |
|
type: mteb/tatoeba-bitext-mining |
|
name: MTEB Tatoeba (wuu-eng) |
|
config: wuu-eng |
|
split: test |
|
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 |
|
metrics: |
|
- type: accuracy |
|
value: 75.9 |
|
- type: f1 |
|
value: 70.57690476190476 |
|
- type: precision |
|
value: 68.19761904761904 |
|
- type: recall |
|
value: 75.9 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: webis-touche2020 |
|
name: MTEB Touche2020 |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 2.804 |
|
- type: map_at_10 |
|
value: 11.267000000000001 |
|
- type: map_at_100 |
|
value: 17.034 |
|
- type: map_at_1000 |
|
value: 18.733 |
|
- type: map_at_3 |
|
value: 6.071 |
|
- type: map_at_5 |
|
value: 8.187 |
|
- type: mrr_at_1 |
|
value: 34.694 |
|
- type: mrr_at_10 |
|
value: 50.504000000000005 |
|
- type: mrr_at_100 |
|
value: 51.162 |
|
- type: mrr_at_1000 |
|
value: 51.162 |
|
- type: mrr_at_3 |
|
value: 45.918 |
|
- type: mrr_at_5 |
|
value: 49.082 |
|
- type: ndcg_at_1 |
|
value: 33.672999999999995 |
|
- type: ndcg_at_10 |
|
value: 27.478 |
|
- type: ndcg_at_100 |
|
value: 37.961 |
|
- type: ndcg_at_1000 |
|
value: 50.117 |
|
- type: ndcg_at_3 |
|
value: 30.156 |
|
- type: ndcg_at_5 |
|
value: 29.293999999999997 |
|
- type: precision_at_1 |
|
value: 34.694 |
|
- type: precision_at_10 |
|
value: 24.082 |
|
- type: precision_at_100 |
|
value: 7.632999999999999 |
|
- type: precision_at_1000 |
|
value: 1.569 |
|
- type: precision_at_3 |
|
value: 30.612000000000002 |
|
- type: precision_at_5 |
|
value: 29.387999999999998 |
|
- type: recall_at_1 |
|
value: 2.804 |
|
- type: recall_at_10 |
|
value: 17.785 |
|
- type: recall_at_100 |
|
value: 47.452 |
|
- type: recall_at_1000 |
|
value: 84.687 |
|
- type: recall_at_3 |
|
value: 6.9190000000000005 |
|
- type: recall_at_5 |
|
value: 10.807 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/toxic_conversations_50k |
|
name: MTEB ToxicConversationsClassification |
|
config: default |
|
split: test |
|
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c |
|
metrics: |
|
- type: accuracy |
|
value: 74.5162 |
|
- type: ap |
|
value: 15.022137849208509 |
|
- type: f1 |
|
value: 56.77914300422838 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/tweet_sentiment_extraction |
|
name: MTEB TweetSentimentExtractionClassification |
|
config: default |
|
split: test |
|
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a |
|
metrics: |
|
- type: accuracy |
|
value: 59.589700056593095 |
|
- type: f1 |
|
value: 59.93893560752363 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/twentynewsgroups-clustering |
|
name: MTEB TwentyNewsgroupsClustering |
|
config: default |
|
split: test |
|
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 |
|
metrics: |
|
- type: v_measure |
|
value: 40.11538634360855 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twittersemeval2015-pairclassification |
|
name: MTEB TwitterSemEval2015 |
|
config: default |
|
split: test |
|
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 83.97806520832091 |
|
- type: cos_sim_ap |
|
value: 67.80381341664686 |
|
- type: cos_sim_f1 |
|
value: 63.01665268958908 |
|
- type: cos_sim_precision |
|
value: 57.713407943822695 |
|
- type: cos_sim_recall |
|
value: 69.39313984168865 |
|
- type: dot_accuracy |
|
value: 83.9899862907552 |
|
- type: dot_ap |
|
value: 67.80914960711299 |
|
- type: dot_f1 |
|
value: 63.0287144048612 |
|
- type: dot_precision |
|
value: 57.46252444058223 |
|
- type: dot_recall |
|
value: 69.78891820580475 |
|
- type: euclidean_accuracy |
|
value: 83.9601835846695 |
|
- type: euclidean_ap |
|
value: 67.79862461635126 |
|
- type: euclidean_f1 |
|
value: 63.02426882389545 |
|
- type: euclidean_precision |
|
value: 59.64664310954063 |
|
- type: euclidean_recall |
|
value: 66.80738786279683 |
|
- type: manhattan_accuracy |
|
value: 83.94230196101806 |
|
- type: manhattan_ap |
|
value: 67.78560087328111 |
|
- type: manhattan_f1 |
|
value: 63.10622881851117 |
|
- type: manhattan_precision |
|
value: 56.63939584644431 |
|
- type: manhattan_recall |
|
value: 71.2401055408971 |
|
- type: max_accuracy |
|
value: 83.9899862907552 |
|
- type: max_ap |
|
value: 67.80914960711299 |
|
- type: max_f1 |
|
value: 63.10622881851117 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twitterurlcorpus-pairclassification |
|
name: MTEB TwitterURLCorpus |
|
config: default |
|
split: test |
|
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 89.04994760740482 |
|
- type: cos_sim_ap |
|
value: 85.71231674852108 |
|
- type: cos_sim_f1 |
|
value: 78.92350867093619 |
|
- type: cos_sim_precision |
|
value: 74.07807645549101 |
|
- type: cos_sim_recall |
|
value: 84.44718201416693 |
|
- type: dot_accuracy |
|
value: 89.05188807389295 |
|
- type: dot_ap |
|
value: 85.71776365526502 |
|
- type: dot_f1 |
|
value: 78.92055922835156 |
|
- type: dot_precision |
|
value: 74.34152317430069 |
|
- type: dot_recall |
|
value: 84.10070834616569 |
|
- type: euclidean_accuracy |
|
value: 89.05188807389295 |
|
- type: euclidean_ap |
|
value: 85.7114644968015 |
|
- type: euclidean_f1 |
|
value: 78.9458525345622 |
|
- type: euclidean_precision |
|
value: 74.14119556397078 |
|
- type: euclidean_recall |
|
value: 84.41638435478903 |
|
- type: manhattan_accuracy |
|
value: 89.06547133930997 |
|
- type: manhattan_ap |
|
value: 85.70658730333459 |
|
- type: manhattan_f1 |
|
value: 78.91009741543552 |
|
- type: manhattan_precision |
|
value: 74.00714719169308 |
|
- type: manhattan_recall |
|
value: 84.5087773329227 |
|
- type: max_accuracy |
|
value: 89.06547133930997 |
|
- type: max_ap |
|
value: 85.71776365526502 |
|
- type: max_f1 |
|
value: 78.9458525345622 |
|
--- |
|
|
|
## Bedrock Titan Text Embeddings v2 |
|
This repository contains the MTEB scores and usage examples of Bedrock Titan Text Embeddings v2. You can use the embedding model either via the Bedrock InvokeModel API or via Bedrock's batch jobs. For RAG use cases we recommend the former to embed queries during search (latency optimized) and the latter to index corpus (throughput optimized). |
|
|
|
## Using Bedrock's InvokeModel API |
|
|
|
```python |
|
import json |
|
import boto3 |
|
class TitanEmbeddings(object): |
|
accept = "application/json" |
|
content_type = "application/json" |
|
|
|
def __init__(self, model_id="amazon.titan-embed-text-v2:0"): |
|
self.bedrock = boto3.client(service_name='bedrock-runtime') |
|
self.model_id = model_id |
|
def __call__(self, text, dimensions, normalize=True): |
|
""" |
|
Returns Titan Embeddings |
|
Args: |
|
text (str): text to embed |
|
dimensions (int): Number of output dimensions. |
|
normalize (bool): Whether to return the normalized embedding or not. |
|
Return: |
|
List[float]: Embedding |
|
|
|
""" |
|
body = json.dumps({ |
|
"inputText": text, |
|
"dimensions": dimensions, |
|
"normalize": normalize |
|
}) |
|
response = self.bedrock.invoke_model( |
|
body=body, modelId=self.model_id, accept=self.accept, contentType=self.content_type |
|
) |
|
response_body = json.loads(response.get('body').read()) |
|
return response_body['embedding'] |
|
|
|
if __name__ == '__main__': |
|
""" |
|
Entrypoint for Amazon Titan Embeddings V2 - Text example. |
|
""" |
|
dimensions = 1024 |
|
normalize = True |
|
|
|
titan_embeddings_v2 = TitanEmbeddings(model_id="amazon.titan-embed-text-v2:0") |
|
|
|
input_text = "What are the different services that you offer?" |
|
embedding = titan_embeddings_v2(input_text, dimensions, normalize) |
|
|
|
print(f"{input_text=}") |
|
print(f"{embedding[:10]=}") |
|
|
|
``` |
|
|
|
|
|
## Using Bedrock's batch jobs |
|
|
|
```python |
|
import requests |
|
from aws_requests_auth.boto_utils import BotoAWSRequestsAuth |
|
|
|
region = "us-east-1" |
|
base_uri = f"bedrock.{region}.amazonaws.com" |
|
batch_job_uri = f"https://{base_uri}/model-invocation-job/" |
|
|
|
# For details on how to set up an IAM role for batch inference, see |
|
# https://docs.aws.amazon.com/bedrock/latest/userguide/batch-inference-permissions.html |
|
role_arn = "arn:aws:iam::111122223333:role/my-batch-inference-role" |
|
|
|
payload = { |
|
"inputDataConfig": { |
|
"s3InputDataConfig": { |
|
"s3Uri": "s3://my-input-bucket/batch-input/", |
|
"s3InputFormat": "JSONL" |
|
} |
|
}, |
|
"jobName": "embeddings-v2-batch-job", |
|
"modelId": "amazon.titan-embed-text-v2:0", |
|
"outputDataConfig": { |
|
"s3OutputDataConfig": { |
|
"s3Uri": "s3://my-output-bucket/batch-output/" |
|
} |
|
}, |
|
"roleArn": role_arn |
|
} |
|
|
|
request_auth = BotoAWSRequestsAuth( |
|
aws_host=base_uri, |
|
aws_region=region, |
|
aws_service="bedrock" |
|
) |
|
|
|
|
|
response= requests.request("POST", batch_job_uri, json=payload, auth=request_auth) |
|
print(response.json()) |
|
``` |