metadata
base_model: sentence-transformers/stsb-xlm-r-multilingual
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:15642
- loss:CosineSimilarityLoss
widget:
- source_sentence: Certificat d'admission universitaire
sentences:
- شهادة القبول الجامعي
- شهادة الحياة الفردية
- Film Production Center Creation Permit
- source_sentence: دبلوم الدراسات الجامعية التقنية
sentences:
- Wind Energy Equipment Registration Certificate
- Industrial Safety Standards Compliance Certificate
- Virtual Reality Technologies Import License
- source_sentence: شهادة المطابقة للمعايير المغربية
sentences:
- Certificate of Good Conduct
- Commercial Lease Contract
- Marriage Contract Document
- source_sentence: رخصة استغلال مركز دراسات الطاقة المتجددة
sentences:
- Permis d'importation de matériel médical
- Permis d'exploitation d'un centre d'études des énergies renouvelables
- >-
Autorisation d'exercer une activité dans le domaine des énergies
renouvelables
- source_sentence: Certificat de qualification en conception de systèmes intelligents
sentences:
- شهادة فحص منشآت الطاقة
- Permis de création d'une centrale électrique éolienne
- رخصة صناعية
model-index:
- name: SentenceTransformer based on sentence-transformers/stsb-xlm-r-multilingual
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: eval
type: eval
metrics:
- type: pearson_cosine
value: 0.9932857106529867
name: Pearson Cosine
- type: spearman_cosine
value: 0.8659282642227534
name: Spearman Cosine
- type: pearson_manhattan
value: 0.9872002912590794
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8659382004848898
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.9873391899791255
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8659392197992224
name: Spearman Euclidean
- type: pearson_dot
value: 0.9762599450100259
name: Pearson Dot
- type: spearman_dot
value: 0.8656650063924476
name: Spearman Dot
- type: pearson_max
value: 0.9932857106529867
name: Pearson Max
- type: spearman_max
value: 0.8659392197992224
name: Spearman Max
SentenceTransformer based on sentence-transformers/stsb-xlm-r-multilingual
This is a sentence-transformers model finetuned from sentence-transformers/stsb-xlm-r-multilingual. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/stsb-xlm-r-multilingual
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("amahdaouy/xlmrsim-mar_2ep")
# Run inference
sentences = [
'Certificat de qualification en conception de systèmes intelligents',
'رخصة صناعية',
"Permis de création d'une centrale électrique éolienne",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
eval
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.9933 |
spearman_cosine | 0.8659 |
pearson_manhattan | 0.9872 |
spearman_manhattan | 0.8659 |
pearson_euclidean | 0.9873 |
spearman_euclidean | 0.8659 |
pearson_dot | 0.9763 |
spearman_dot | 0.8657 |
pearson_max | 0.9933 |
spearman_max | 0.8659 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 15,642 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 4 tokens
- mean: 10.38 tokens
- max: 33 tokens
- min: 4 tokens
- mean: 10.47 tokens
- max: 28 tokens
- min: 0.0
- mean: 0.5
- max: 1.0
- Samples:
sentence_0 sentence_1 label License to Produce and Distribute TV Programs
Licence de production et de distribution de programmes télévisés
1.0
Certificat de qualification en conception de systèmes intelligents
رخصة صناعية
0.0
عقد الشراء المشترك
Shared Purchase Act
1.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32num_train_epochs
: 2multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | eval_spearman_max |
---|---|---|---|
0.2045 | 100 | - | 0.8638 |
0.4090 | 200 | - | 0.8651 |
0.6135 | 300 | - | 0.8655 |
0.8180 | 400 | - | 0.8659 |
1.0 | 489 | - | 0.8659 |
1.0225 | 500 | 0.0221 | 0.8659 |
1.2270 | 600 | - | 0.8659 |
1.4315 | 700 | - | 0.8660 |
1.6360 | 800 | - | 0.8659 |
1.8405 | 900 | - | 0.8659 |
2.0 | 978 | - | 0.8659 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.0
- Transformers: 4.44.2
- PyTorch: 2.4.0+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}