pegasus_X_pacsum / README.md
alwaysaditi's picture
End of training
dc78b20 verified
|
raw
history blame
3.85 kB
metadata
base_model: google/pegasus-x-base
tags:
  - generated_from_trainer
model-index:
  - name: PACSUM
    results: []

PACSUM

This model is a fine-tuned version of google/pegasus-x-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0047

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
8.6563 0.1 10 8.4046
7.9827 0.2 20 7.5165
7.4924 0.3 30 6.8226
6.4399 0.4 40 6.1135
5.9354 0.5 50 5.2600
5.0654 0.6 60 3.9574
4.0233 0.7 70 2.7544
3.0571 0.8 80 1.8116
2.2512 0.9 90 1.4997
1.8324 1.0 100 1.4224
1.68 1.1 110 1.3573
1.3785 1.2 120 1.2742
1.4391 1.3 130 1.2275
1.1567 1.4 140 1.1928
1.167 1.5 150 1.1607
1.2516 1.6 160 1.1298
1.2057 1.7 170 1.1119
1.2158 1.8 180 1.1022
1.1413 1.9 190 1.0905
1.0672 2.0 200 1.0803
1.087 2.1 210 1.0707
1.1339 2.2 220 1.0680
1.1307 2.3 230 1.0570
1.1404 2.4 240 1.0506
1.1626 2.5 250 1.0481
1.2482 2.6 260 1.0486
0.9977 2.7 270 1.0406
0.9627 2.8 280 1.0340
1.1333 2.9 290 1.0319
1.0409 3.0 300 1.0269
1.0247 3.1 310 1.0224
1.1111 3.2 320 1.0222
1.0543 3.3 330 1.0201
1.0024 3.4 340 1.0190
1.0748 3.5 350 1.0171
1.0088 3.6 360 1.0155
0.9376 3.7 370 1.0130
1.032 3.8 380 1.0122
1.085 3.9 390 1.0107
0.9086 4.0 400 1.0091
1.0712 4.1 410 1.0074
0.9856 4.2 420 1.0067
0.9824 4.3 430 1.0068
0.8748 4.4 440 1.0074
0.9619 4.5 450 1.0069
1.0256 4.6 460 1.0061
1.0318 4.7 470 1.0053
1.0897 4.8 480 1.0049
1.0297 4.9 490 1.0048
0.9533 5.0 500 1.0047

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1